新课标高三数学归纳法专项训练(河北)
用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为( )
A.2k+1 B.2(2k+1)
C. D.
如果命题P(n)对n=k成立,则它对n=k+1也成立,现已知P(n)对n=4不成立,则下列结论正确的是( )
A.P(n)对n∈N*成立 |
B.P(n)对n>4且n∈N*成立 |
C.P(n)对n<4且n∈N*成立 |
D.P(n)对n≤4且n∈N*不成立 |
用数学归纳法证明“1+++…+<n(n∈N*,)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( )
A.2k-1 | B.2k-1 |
C.2k | D.2k+1 |
已知y=f(x)满足f(n-1)=f(n)-lg an-1(n≥2,n∈N)且f(1)=-lg a,是否存在实数α,β,使f(n)=(αn2+βn-1)·lg a对任何n∈N*都成立,证明你的结论