新课标高三数学分布、期望与方差专项训练(河北)
一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P(ξ=12)=( )
在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率p的取值范围是( )
A.[0.4,1) | B.(0,0.6] |
C.(0,0.4] | D.[0.6,1) |
下列是4个关于离散型随机变量ξ的期望和方差的描述
①Eξ与Dξ是一个数值,它们是ξ本身所固有的特征数,它们不具有随机性
②若离散型随机变量一切可能取值位于区间内,则a≤Eξ≤b
③离散型随机变量的期望反映了随机变量取值的平均水平,而方差反映的是随机变量取值的稳定与波动,集中与离散的程度
④离散型随机变量的期望值可以是任何实数,而方差的值一定是非负实数
以上4个描述正确的个数是( )
A.1 | B.2 | C.3 | D.4 |
一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为( )
A.2.44 | B.3.376 | C.2.376 | D.2.4 |
某厂生产的圆柱形零件的外径ε~N(4,0.25).质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________.
利用下列盈利表中的数据进行决策,应选择的方案是______.
自然状况 |
概率盈利方案 |
A1 |
A2 |
A3 |
A4 |
S1 |
0.25 |
50 |
70 |
-20 |
98 |
S2 |
0.30 |
65 |
26 |
52 |
82 |
S3 |
0.45 |
26 |
16 |
78 |
-10 |
某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=________(结果用最简分数表示).
一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.
(1)求在一次抽检后,设备不需要调整的概率;
(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.
甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数ξ的概率分布;
(2)求甲、乙两人至少有一人入选的概率.
在1,2,3,…,9这9个自然数中,任取3个数.
(1)求这3个数中恰有1个偶数的概率;
(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ.