备战高频考点与最新模拟专题18坐标系与参数方程
在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为,则直线的极坐标方程为________.
平面直角坐标系中,将曲线 (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位长度,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1.以坐标原点为极点,x轴的非负半轴为极轴建立的单位长度相同的极坐标系中的曲线C2的方程为ρ=4sinθ,则C1和C2公共弦的长度为________.
直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线C1: (θ为参数)和曲线C2:ρ=2上,则|AB|的最小值为________.
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
已知动点,Q都在曲线C:(β为参数)上,对应参数分别为β=α
与α=2π(0<α<2π),M为PQ的中点。
(1)求M的轨迹的参数方程
(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点。
设曲线C的参数方程为:x=t,y=t2(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为_______.
已知曲线的参数方程为(为参数),在点处的切线为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,则的极坐标方程为_____________.
在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线的极坐标方程为,且点A在直线上。
(1)求的值及直线的直角坐标方程;
(2)圆C的参数方程为,试判断直线l与圆C的位置关系.
在直角坐标系中以为极点,轴正半轴为极轴建立坐标系.圆,直线的极坐标方程分别为.
(1)
(2)
已知抛物线的参数方程为 (t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=________.
如图所示,在极坐标系中,过点M(2,0)的直线l与极轴的夹角α=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=________.
在直角坐标系xOy.圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);
(2)求圆C1与C2的公共弦的参数方程.
已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
在直角坐标系xOy中,已知曲线C1: (t为参数)与曲线C2: (θ为参数,a>0)有一个公共点在x轴上,则a=________.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立坐标系.已知射线θ=与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为________.
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),,圆C的参数方程为 (θ为参数).
(1)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(2)判断直线l与圆C的位置关系.
在极坐标系中,圆ρ=4sinθ的圆心到直线θ= (ρ∈R)的距离是________.
在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为 (t为参数)和 (θ为参数),则曲线C1与C2的交点坐标为________.
(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为________.
(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为________.
在直角坐标系xOy中,设倾斜角为α的直线l:,(t为参数)与曲线C: (θ为参数)相交于不同两点A,B.
(1)若α=,求线段AB中点M的坐标;
(2)若|PA|·|PB|=|OP|2,其中P(2,),求直线l的斜率.
已知抛物线的参数方程为(为参数),若斜率为1的直线经过抛物线的的焦点,且与圆相切,则=_____
如图,直角坐标系Oy所在的平面为,直角坐标系Oy (其中轴与y轴重合)所在平面为,.[来
(1)已知平面内有一点,则点在平面内的射影P的坐标为 ;
(2)已知平面内的曲线的方程是,则曲线在平面内的射影C的方程是 .
直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线 为参数)和曲线上,则的最小值为
在平面直角坐标系中,求过椭圆(为参数)的右焦点且与直线(为参数)平行的直线的普通方程。
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
已知圆的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,则圆的直角坐标方程为_______________,若直线与圆相切,则实数的值为_____________.
已知直线交极轴于点,过极点作的垂线,垂足为,现将线段绕极点旋转,则在旋转过程中线段所扫过的面积为________。
以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的参数方程为(其中为参数,且),则曲线的极坐标方程为 .
以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin+m=0,曲线C2的参数方程为(0<α<π),若曲线C1与C2有两个不同的交点,则实数m的取值范围是____________.
已知曲线的参数方程是.(为参数),以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,则在曲线上到直线的距离为的点有_____个.
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.若曲线的参数方程为(为参数),曲线的极坐标方程为.则曲线与曲线的交点个数为________个.
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为(t为参数),直线与圆C相交于A,B两点,已知定点,求|MA|·|MB|.
在直角坐标系中,直线的方程为,曲线的参数方程为.
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值.
已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程;
(2)若是直线与圆面≤的公共点,求的取值范围.
在平面直角坐标系中,圆的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.求:
(1)圆的直角坐标方程;
(2)圆的极坐标方程.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。
(1)化圆C的参数方程为极坐标方程;
(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线 的直角坐标方程。
在直角坐标系xoy中,曲线C1的参数方程为(t为参数),P为C1上的动点,Q为线段OP的中点.
(1)求点Q的轨迹C2的方程;
(2)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线p=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线向右平移h个单位,所得直线与圆C相切,求h.
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线向右平移h个单位,所得直线与圆C相切,求h.
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.
已知直线:为参数), 曲线 (为参数).
(1)设与相交于两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若求的值.
已知在直角坐标系xOy中,曲线C的参数方程为(为参数),直线经过定点P(3,5),倾斜角为(1)写出直线的参数方程和曲线C的标准方程;(2)设直线与曲线C相交于A、B两点,求的值。