江西省南昌市高三第二次模拟考试文科数学试卷
复数在复平面内对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
下列说法正确的是( )
A.命题“存在,”的否定是“任意,” |
B.两个三角形全等是这两个三角形面积相等的必要条件 |
C.函数在其定义域上是减函数 |
D.给定命题,若“且”是真命题,则是假命题 |
已知函数的最小正周期为,为了得到函数
的图象,只要将的图象( )
A.向左平移个单位长度 | B.向右平移个单位长度 |
C.向左平移个单位长度 | D.向右平移个单位长度 |
一几何体的三视图如图,该几何体的顶点都在球的球面上,球的表面积是( )
A. | B. | C. | D. |
方程表示的曲线是( )
A.一个圆和一条直线 | B.一个圆和一条射线 | C.一个圆 | D.一条直线 |
已知函数是周期为2的周期函数,且当时,,则函数的零点个数是( )
A.9 | B.10 | C.11 | D.12 |
已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是( )
A. | B. | C. | D. |
如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是( )
过双曲线的左焦点,作圆的切线,切点为,延长交双曲线右支于点,若,则双曲线的离心率为( )
A. | B. | C. | D. |
观察下列等式,若类似上面各式方法将分拆得到的等式右边最后一个数是,则正整数等于____.
如图放置的边长为1的正方形沿轴滚动,点恰好经过原点.设顶点的轨迹方程是,则对函数有下列判断:①函数是偶函数;②对任意的,都有;③函数在区间上单调递减;④函数在区间上是减函数.其中判断正确的序号是 .
某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标 |
||||||
甲 |
3 |
7 |
20 |
40 |
20 |
10 |
乙 |
5 |
15 |
35 |
35 |
7 |
3 |
根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算甲生产一件产品A,给工厂带来盈利不小于30元的概率;
(2)若甲一天能生产20件产品A,乙一天能生产15件产品A,估计甲乙两人一天生产的35件产品A中三等品的件数.
已知公比不为的等比数列的首项,前项和为,且成等差数列.
(1)求等比数列的通项公式;
(2)对,在与之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和.
如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得.
(1)求五棱锥的体积;
(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.
如图已知中,,点是边上的动点,动点满足(点按逆时针方向排列).
(1)若,求的长;
(2)若,求△面积的最大值.
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.