北京市房山区中考二模数学试卷
若正多边形的一个外角是36°,则该正多边形为( )
A.正八边形 | B.正九边形 | C.正十边形 | D.正十一边形 |
从1.2. 3.4.5这五个数中随机取出一个数,取出的数是某个整数的平方数的概率是 ( )
A. | B. | C. | D. |
如图,直线l1∥l2,∠1=∠2=35°,∠P=90°,则∠3等于( )
A.50° | B.55° | C.60° | D.65° |
房山区体校甲、乙两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:
队员 |
1号 |
2号 |
3号 |
4号 |
5号 |
甲队 |
176 |
175 |
174 |
171 |
174 |
乙队 |
170 |
173 |
171 |
174 |
182 |
设两队队员身高的平均数分别为,身高的方差分别为,,则正确的选项是( )
A. B.
C. D.
如图,正方形ABCD的边长为4,点E,F分别为边AB,BC上的动点,且DE=DF.若△DEF的面积为y,BF的长为x,则表示y与x的函数关系的图象大致是( )
A. | B. | C. | D. |
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为 .
矩形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置.点A1,A2,A3,A4…和点C1,C2,C3,C4…,分别在直线 (k>0)和x轴上,若点B1(1,2),B2(3,4),且满足,则直线的解析式为 ,点的坐标为 ,点的坐标为_ .
列方程或方程组解应用题:
据了解,京石高铁开通后,北京西到石家庄所用时间将比坐快速火车节省约两个小时左右,已知北京西到石家庄的距离约为280公里,轻轨速度约是快速火车速度的4倍,求北京西到石家庄的轻轨速度和快速火车速度约为多少?
已知:如图,反比例函数与一次函数的图象交于A(3,1)、B(m,-3)两点.
(1)求反比例函数与一次函数的解析式.
(2)若点P是直线上一点,且OP=OA,请直接写出点P的坐标.
已知:如图,梯形ABCD中,AD=BC,F为BC的中点,AB=2,∠A=120°,过点F作EF⊥BC交DC于点E,且EF=" 3" ,求DC的长.
房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式” 随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了 名学生;
(2)补全两幅统计图;
(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
已知:如图,△ABC内接于⊙O,于H,,过A点的直线与OC的延长线交于点D,,.
(1)求证:AD是⊙O的切线;
(2)若E为⊙O上一动点,连接AE交直线OD于点P,问:是否存在点P,使得PA+PH的值最小,若存在求PA+PH的最小值,若不存在,说明理由.
阅读下列材料:
我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.
结合阅读材料,完成下列问题:
(1) 下列哪个四边形一定是和谐四边形( )
A.平行四边形 | B.矩形 | C.菱形 | D.等腰梯形 |
(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB="BC," 请直接写出∠ABC的度数.
已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;
(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.
边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.