福建省福州市高三5月综合练习理科数学试卷
复数(为虚数单位且)在复平面内对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
已知集合,,则“”是“”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
已知,n∈N※,如果执行右边的程序框图,那么输出的等于( )
A.18.5 | B.37 | C.185 | D.370 |
已知函数的值域为,则满足这样条件的函数的个数有( )个.
A.8 | B.9 | C.26 | D.27 |
设F1、F2分别为双曲线C:的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线的某条渐近线于M、N两点,且满足MAN=120o,则该双曲线的离心率为( )
A. | B. | C. | D. |
设已知均为整数(),若和被除所得的余数相同,则称和对模同余,记为 ,若,且, 则的值可以是( )
A.2011 | B.2012 | C.2013 | D.2014 |
如图,己知,∠AOB为锐角,OM平分∠AOB,点N为线段AB的中点,,若点P在阴影部分(含边界)内,则在下列给出的关于x、y的式子中,①x≥0,y≥0;②x-y≥0;③x-y≤0;④5x-3y≥0;⑤3x-5y≥0.满足题设条件的为( )
A.①②④ | B.①③④ | C.①③⑤ | D.②⑤ |
在密码理论中,“一次一密”的密码体系是理论上安全性最高的.某部队执行特殊任务使用四个不同的口令,每次只能使用其中的一种,且每次都是从上次未使用的三个口令中等可能地随机选用一种.设第1次使用口令,那么第5次也使用口令的概率是( )
A. | B. | C. | D. |
已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为______ _____.
每年的三月十二日,是中国的植树节,林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;
(2)设抽测的10株甲种树苗高度平均值为x,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;
(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.
在中,的对边分别是,已知,平面向量,,且.
(1)求△ABC外接圆的面积;
(2)已知O为△ABC的外心,由O向边BC、CA、AB引垂线,垂足分别为D、E、F,求的值.
如图长方体中,底面ABCD是边长为1的正方形,E为延长线上的一点且满足.
(1)求证:平面;
(2)当为何值时,二面角的大小为.
已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点;
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意,恒成立.
二阶矩阵A,B对应的变换对圆的区域作用结果如图所示.
(1)请写出一个满足条件的矩阵A,B;
(2)利用(1)的结果,计算C=BA,并求出曲线在矩阵C对应的变换作用下的曲线方程.
已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线l的参数方程是(为参数).
(1)求曲线的直角坐标方程;
(2)设直线l与曲线交于、两点,点的直角坐标为(2,1),若,求直线l的普通方程.