浙江省温州市高三八校联考理科数学
在正三棱锥(顶点在底面的射影是底面正三角形的中心)中,
,过
作与
分别交于
和
的截面,则截面
的周长的最小值是 ( )
A.9 | B.10 | C.11 | D.12 |
平面上画了一些彼此相距的平行线,把一枚半径
的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知函数,
,其中a为常数,且函数y=f(x)和y=g(x)的图像在其与两坐标轴的交点处的切线相互平行.若关于x的不等式
对任意不等于1的正实数都成立,则实数m的取值集合是____________。
已知定义在上的函数
.给出下列结论:①函数
的值域为
;②关于
的方程
有
个不相等的实数
根;③当时,函数
的图象与
轴围成的图形面积为
,则[
;④存在
,使得不等式
成立,其中你认为正确的所有结论的序号为____________
(本小题满分14分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取
球.获奖规则如下:依次取到标有“生”“意”“兴”
“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;(Ⅱ)设摸球次数为
,求
的分布列和数学期望.
(本小题满分14分)
已知函数
(Ⅰ)写出函数的单调递减区间;
(Ⅱ)设,
的最小值是
,最大值是
,求实数
的值.
(本小题满分15分)
已知四棱锥的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(Ⅰ)证明:面面
;
(Ⅱ)求与
所成的角;
(Ⅲ)求面与面
所成二面角的大小。
.本小题满分15分)
如图,已知椭圆E:,焦点为
、
,双曲线G:
的顶点是该椭
圆的焦点,设
是双曲线G上异于顶点的任一点,直线
、
与椭圆的交点分别为A、B和C、D,已知三角形
的周长等于
,椭圆四个顶点组成的菱形的面积为
.
(1)求椭圆E与双曲线G的方程;
(2)设直线、
的斜率分别为
和
,探求
和
的关系;
(3)是否存在常数,使得
恒成立?
若存在,试求出的值;若不存在, 请说明理由.