江苏省昆山市九年级下学期教学质量调研(二模)数学试卷
下列计算中,正确的是
A.3a-2a=1 | B.(x+3y)2=x2+9y2 |
C.(x5)2=x7 | D.3--2= |
某中学为了让学生的跳远在中考体育测试中取得满意的成绩,在锻炼一个月后,学校对九年级一班的45名学生进行测试,成绩如下表:
这些运动员跳远成绩的中位数和众数分别是
A.190,200 | B.9,9 | C.15,9 | D.185,200 |
如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是
A.①② | B.②③ | C.②④ | D.③④ |
若反比例函数y=的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在
A.第一、二象限 | B.第一、三象限 |
C.第二、四象限 | D.第三、四象限 |
如图把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为
A.15°或30° | B.30°或45° |
C.45°或60° | D.30°或60° |
函数y=中自变量x的取值范围是
A.x≤3 |
B.x=4 |
C.x<3且x≠4 |
D.x≤3且x≠4 |
下列命题中,是真命题的是
A.一组邻边相等的平行四边形是正方形 |
B.依次连结四边形四边中点所组成的图形是矩形 |
C.平分弦的直径垂直于弦,并且平分弦所对的弧 |
D.相等的圆心角所对的弧相等,所对的弦也相等 |
把二次函数y=ax2+bx+c的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x轴的交点是
A.(-2.5,0) | B.(2.5,0) | C.(-1.5,0) | D.(1.5,0) |
如图,正方形ABCD中,AB=8cm,对角线AC、BD相交于点O,点E、F分别从B、C两点同时出发,以1cm/s的速度沿BC、CD运动,到点C、D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图像表示为
世界上最长的跨海大桥一杭州湾跨海大桥总造价为32.48亿元人民币,32.48亿元用科学记数法可表示为 元.(结果保留3个有效数字)
若某个圆锥的侧面积为8 πcm2,其侧面展开图的圆心角为45°,则该圆锥的底面半径为 cm.
不透明的布袋里有白球2个,红球10个,它们除了颜色不同其余均相同,为了使从布袋里随机摸一个球是白球的概率为,若白球个数保持不变,则要从布袋里拿去 个红球.
如图,AB与⊙O相切于点B,AO的连线交⊙O于点C;若∠A=50°,则∠ABC为 .
如图,点A、B、C、D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= .
已知一次函数y=x+b与反比例函数y=中,x与y的对应值如下表:
则不等式x+b>的解集为 .
已知不等式组:
(1)求此不等式组的整数解;
(2)若上述整数解满足方程ax+6=x-2a,求a的值.
“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)已知某地区共6500名家长,估计其中反对中学生带手机的家长大约有多少名?
如图,正方形ABCD中,BE=CF.
(1)求证:△BCE≌△CDF;
(2)求证:CE⊥DF;
(3)若CD=4,且DG2+GE2=18,则BE= .
有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)列表或画树状图表示所有取出的两张牌的可能性;
(2)甲、乙两人做游戏,现有两种方案:
A方案:若两次抽得相同花色则甲胜,否则乙胜;
B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.
请问甲选择哪种方案获胜概率更高?
如图,直线y=x+1与y轴交于A点,与反比列函数y=(x>0)的图象交于点M,过M作MH⊥x,且tan∠AHO=.
(1)求k的值;
(2)设点N(1,a)是反比例函数y=(x>0)图像上的点,在y轴上是否存在点P,使得PM+PN最小,若存在,求出点P的坐标;若不存在,请说明理由.
为了激发学生学习英语的兴趣,某中学举行了校园英文歌曲大赛,并设立了一、二、三等奖。学校计划根据设奖情况共买50件奖品,其中购买二等奖奖品件数比一等奖奖品件数的2倍件数还少10件,购买三等奖奖品所花钱数不超过二等奖所花钱数的1.5倍,且三等奖奖品数不能少于前两种奖品数之和.其中各种奖品的单价如下表所示,如果计划一等奖奖品买x件,买50件奖品的总费用是w元.
(1)用含有x的代数式表示:该校团委购买二等奖奖品多少件,三等奖奖品多少件?并表示w与x的函数关系式;
(2)请问共有哪几种方案?
(3)请你计算一下,学校应如何购买这三种奖品,才能使所支出的总费用最少,最少是多少元?
在平面直角坐标系xOy中,已点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过D作OD⊥OC,OD与⊙O相交于点D(其中点C、D按顺时针方向排列),连接AB.
(1)当OC//AB时,∠BOC的度数为
(2)连接AC、BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.
(3)连接AD,当OC//AD时,
①求出点C的坐标;
②直线BC是否为⊙O的切线?请作出判断,并说明理由.
如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.