高考数学(理)一轮配套特训:2-12导数的应用二
函数y=x4-4x+3在区间[-2,3]上的最小值为( )
A.72 | B.36 | C.12 | D.0 |
函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定( )
A.有最小值 | B.有最大值 | C.是减函数 | D.是增函数 |
若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是( )
A.(-,1) | B.[-,1) |
C.[-2,1) | D.(-2,1) |
设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( )
已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=lnx-ax,若函数在定义域上有且仅有4个零点,则实数a的取值范围是( )
A.(e,+∞) | B.(0,) |
C.(1,) | D.(-∞,) |
函数f(x)=-x3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________.
已知函数f(x)=(x2-3x+3)ex,设t>-2,函数f(x)在[-2,t]上为单调函数时,t的取值范围是________.
设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为________.
已知函数f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函数f(x)在x=1处有极值10,求b的值;
(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.
已知函数f(x)=(ax+1)ex.
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.
已知函数f(x)=ax2-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.
已知函数f(x)=1+x-+-+…+,则下列结论正确的是( )
A.f(x)在(0,1)上恰有一个零点 |
B.f(x)在(0,1)上恰有两个零点 |
C.f(x)在(-1,0)上恰有一个零点 |
D.f(x)在(-1,0)上恰有两个零点 |
已知函数y=f(x)是定义在R上的奇函数,且当x>0时,f(x)+xf′(x)>0(其中f′(x)是f(x)的导函数),设a=(4)f(4),b=f(),c=(lg)f(lg),则a,b,c由大到小的关系是________.