高考数学(理)一轮配套特训:3-3三角函数的图象与性质
如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )
A. | B. | C. | D. |
函数y=2sin(-2x)(x∈[0,π])的增区间是( )
A.[0,] | B.[,] |
C.[,] | D.[,π] |
已知函数f(x)=sinx+acosx的图象关于直线x=对称,则实数a的值为( )
A.- | B.- | C. | D. |
函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A,B分别为该部分图象的最高点与最低点,且这两点间的距离为4,则函数f(x)图象的一条对称轴的方程为( )
A.x= | B.x= | C.x=4 | D.x=2 |
函数f(x)=cos(ωx+φ)对任意的x∈R,都有f(-x)=f(+x),若函数g(x)=3sin(ωx+φ)-2,则g()的值是( )
A.1 | B.-5或3 | C.-2 | D. |
若函数f(x)=2sin(2x+φ)(|φ|<)与g(x)=cos(ωx-)(ω>0)的图象具有相同的对称中心,则φ=( )
A. | B. | C.- | D.- |
设函数f(x)=3sin(x+),若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为________.
已知函数f(x)=sin(2x+),其中x∈[-,a].当a=时,f(x)的值域是________;若f(x)的值域是[-,1],则a的取值范围是________.
设函数y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期为π,且其图象关于直线x=对称,则在下面四个结论中:①图象关于点(,0)对称;②图象关于点(,0)对称;③在[0,]上是增函数;④在[-,0]上是增函数,所有正确结论的编号为________.
已知函数f(x)=Asin(ωx+φ)+1(ω>0,A>0,0<φ<)的周期为π,f()=+1,且f(x)的最大值为3.
(1)写出f(x)的表达式;
(2)写出函数f(x)的对称中心,对称轴方程.
设函数f(x)=sin(-)-2cos2.
(1)求y=f(x)的最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最大值.
已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.
设函数f(x)=|sin(2x+)|,则下列关于函数f(x)的说法中正确的是( )
A.f(x)是偶函数 |
B.f(x)的最小正周期为π |
C.f(x)的图象关于点(-,0)对称 |
D.f(x)在区间[,]上是增函数 |
已知函数f(x)=sin(ωx+)(ω>0)的单调递增区间为[kπ-,kπ+](k∈Z),单调递减区间为[kπ+,kπ+](k∈Z),则ω的值为________.
已知函数f(x)=sinx+cosx(x∈R),函数y=f(x+φ)(|φ|≤)的图象关于直线x=0对称,则φ的值为________.