全国普通高等学校招生统一考试文科数学
已知全集,集合,则( )
A. | {1,3,5,6} | B. | {2,3,7} | C. | {2,4,7} | D. | {2,5,7} |
随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为,点数之和大于5的概率为,点数之和为偶数的概率为,则
根据如下样本数据:
3 |
4 |
5 |
6 |
7 |
8 |
|
4.0 |
2.5 |
-0.5 | 0.5 |
-2.0 | -3.0 |
得到的回归方程为,则( )
A. , B. ,
C. , D. ,
在如图所示的空间直角坐标系
中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )
A. | ①和② | B. | ③和① | C. | ④和③ | D. | ④和② |
《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求"盖"的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式,它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为( )
甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为件.
某项研究表明,在考虑行车安全的情况下,某路段车流量(单位时间内测量点的车辆数,单位:辆/小时)与车流速度(假设车辆以相同速度行驶,单位:米/秒)平均车长(单位:米)的值有关,其公式为
(1)如果不限定车型,,则最大车流量为辆/小时;
(2)如果限定车型,,则最大车流量比(1)中的最大车流量增加辆/小时.
某实验室一天的温度(单位:
)随时间
(单位:
)的变化近似满足函数关系;
.
(1)求实验室这一天上午8时的温度;
(2)求实验室这一天的最大温差.
已知等差数列满足:,且、、成等比数列.
(1)求数列的通项公式.
(2)记为数列的前项和,是否存在正整数,使得若存在,求的最小值;若不存在,说明理由.
如图,在正方体中,,,,,,分别是棱,,,,,的中点.求证:
(1)直线∥平面;
(2)直线⊥平面.
为圆周率,为自然对数的底数.
(1)求函数的单调区间;
(2)求这6个数中的最大数与最小数;
(3)将这6个数按从小到大的顺序排列,并证明你的结论.