全国普通高等学校招生统一考试理科综合能力测试物理
甲乙两汽车在一平直公路上同向行驶。在到的时间内,它们的图象如图所示。在这段时间内()
A. | 汽车甲的平均速度比乙大 |
B. | 汽车乙的平均速度等于 |
C. | 甲乙两汽车的位移相同 |
D. | 汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 |
取水平地面为重力势能零点。一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。不计空气阻力,该物块落地时的速度方向与水平方向的夹角为()
A. | B. | C. | D. |
一物体静止在粗糙水平地面上,现用一大小为的水平拉力拉动物体,经过一段时间后其速度变为,若将水平拉力的大小改为,物体从静止开始经过同样的时间后速度变为,对于上述两个过程,用、分别表示拉力、所做的功,、分别表示前后两次克服摩擦力所做的功,则()
A. | , | B. | , |
C. | , | D. | , |
如图,一质量为的光滑大圆环,用一细轻杆固定在竖直平面内;套在大圆环上的质量为的小环(可视为质点),从大圆环的最高处由静止滑下,重力加速度为。当小圆环滑到大圆环的最低点时,大圆环对轻杆拉力的大小为:()
A. | B. | C. | D. |
假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为,在赤道的大小为;地球自转的周期为,引力常数为,则地球的密度为:
关于静电场的电场强度和电势,下列说法正确的是:()
A. | 电场强度的方向处处与等势面垂直 |
B. | 电场强度为零的地方,电势也为零 |
C. | 随着电场强度的大小逐渐减小,电势也逐渐降低 |
D. | 任一点的电场强度总是指向该点电势降落最快的方向 |
如图为某磁谱仪部分构件的示意图。图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹。宇宙射线中有大量的电子、正电子和质子。当这些粒子从上部垂直进入磁场时,下列说法正确的是()
A. | 电子与正电子的偏转方向一定不同 |
B. | 电子和正电子在磁场中的运动轨迹一定相同 |
C. | 仅依据粒子的运动轨迹无法判断此粒子是质子还是正电子 |
D. | 粒子的动能越大,它在磁场中运动轨迹的半径越小 |
如图所示,一理想变压器原、副线圈的匝数分别为、。原线圈通过一理想电流表接正弦交流电源,一个二极管和阻值为R的负载电阻串联后接到副线圈的两端;假设该二极管的正向电阻为零,反向电阻为无穷大;用交流电压表测得、端和、端的电压分别为和,则
在伏安法测电阻的实验中,待测电阻约为,电压表的内阻约为,电流表的内阻约为,测量电路中电流表的连接方式如图(a)或图(b)所示,计算结果由计算得出,式中与分别为电压表和电流表的读数;若将图(a)和图(b)中电路测得的电阻值分别记为和,则 ① (填""或"")更接近待测电阻的真实值,且测量值② (填"大于"、"等于"或"小于")真实值,测量值③(填"大于"、"等于"或"小于")真实值。
某实验小组探究弹簧的劲度系数与其长度(圈数)的关系;实验装置如图(a)所示:一均匀长弹簧竖直悬挂,7个指针、、、、、、分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,指向0刻度;设弹簧下端未挂重物时,各指针的位置记为;挂有质量为砝码时,各指针的位置记为;测量结果及部分计算结果如下表所示(为弹簧的圈数,取重力加速度为).已知实验所用弹簧的总圈数为60,整个弹簧的自由长度为.
P1 |
P2 |
P3 |
P4 |
P5 |
P6 |
|
x0 (cm) |
2.04 |
4.06 |
6.06 |
8.05 |
10.03 |
12.01 |
x(cm) |
2.64 |
5.26 |
7.81 |
10.30 |
12.93 |
15.41 |
n |
10 |
20 |
30 |
40 |
50 |
60 |
k(N/m) |
163 |
① |
56.0 |
43.6 |
33.8 |
28.8 |
1/k(m/N) |
0.0061 |
② |
0.0179 |
0.0229 |
0.0296 |
0.0347 |
(1)将表中数据补充完整:①
(2)以为横坐标,为纵坐标,在图(b)给出的坐标纸上画出图象;
(3)图(b)中画出的直线可以近似认为通过原点;若从实验中所用的弹簧截取圈数为的一段弹簧,该弹簧的劲度系数k与其圈数的关系的表达式为=
2012年10月,奥地利极限运动员菲利克斯·鲍姆加特纳乘气球升至约的高空后跳下,经过4分20秒到达距地面约高度处,打开降落伞并成功落地,打破了跳伞运动的多项世界纪录,取重力加速度的大小.
(1)忽略空气阻力,求该运动员从静止开始下落到高度处所需要的时间及其在此处速度的大小.
(2)实际上物体在空气中运动时会受到空气阻力,高速运动受阻力大小可近似表示为,其中为速率,为阻力系数,其数值与物体的形状,横截面积及空气密度有关,已知该运动员在某段时间内高速下落的图象如图所示,着陆过程中,运动员和所携装备的总质量,试估算该运动员在达到最大速度时所受阻力的阻力系数(结果保留1位有效数字)。
半径分别为和的同心圆形导轨固定在同一水平面上,一长为,质量为且质量分布均匀的直导体棒置于圆导轨上面,的延长线通过圆导轨的中心,装置的俯视图如图所示;整个装置位于一匀强磁场中,磁感应强度的大小为,方向竖直向下;在内圆导轨的点和外圆导轨的点之间接有一阻值为R的电阻(图中未画出)。直导体棒在水平外力作用下以角速度绕逆时针匀速转动,在转动过程中始终与导轨保持良好接触。设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大小为,
求:(1)通过电阻的感应电流的方向和大小;
(2)外力的功率。
下列说法正确的是
悬浮在水中的花粉的布朗运动反映了花粉分子的热运动
空气的小雨滴呈球形是水的表面张力作用的结果
彩色液晶显示器利用了液晶的光学性质具有各向异性的特点
高原地区水的沸点较低,这是高原地区温度较低的缘故
干湿泡温度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果
如图所示,两气缸粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;的直径为的2倍,上端封闭,上端与大气连通;两气缸除顶部导热外,其余部分均绝热。两气缸中各有一厚度可忽略的绝热轻活塞,活塞下方充有氮气,活塞上方充有氧气;当大气压为,外界和气缸内气体温度均为7且平衡时,活塞离气缸顶的距离是气缸高度的,活塞在气缸的正中央。
(ⅰ)现通过电阻丝缓慢加热氮气,当活塞升至顶部时,求氮气的温度;
(ⅱ)继续缓慢加热,使活塞上升,当活塞上升的距离是气缸高度的时,求氧气的压强。
图(a)为一列简谐横波在时刻的波形图,是平衡位置在处的质点,是平衡位置在处的质点;图(b)为质点的振动图象,下列说法正确的是()
A. |
在时,质点Q向y轴正方向运动 |
B. |
在时,质点P的加速度方向与y轴正方向相同 |
C. |
从到,该波沿轴负方向传播了 |
D. |
从到,质点通过的路程为 |
E. |
质点Q简谐运动的表达式为 |
一厚度为的大平板玻璃水平放置,其下表面贴有一半径为的圆形发光面。在玻璃板上表面放置一半径为的圆纸片,圆纸片与圆形发光面的中心在同一竖直线上。已知圆纸片恰好能完全挡住从圆形发光面发出的光线(不考虑反射),求平板玻璃的折射率。
在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。下列说法符合历史事实的是()
A. |
密立根通过油滴实验测得了基本电荷的数值 |
B. |
贝克勒尔通过对天然放射性现象的研究,发现了原子中存在原子核 |
C. |
居里夫妇从沥青铀矿中分离出了钋()和镭()两种新元素 |
D. |
卢瑟福通过粒子散射实验,证实了在原子核内存在质子 |
E. |
汤姆孙通过阴极射线在电场和在磁场中的偏转实验,发现了阴极射线是由带负电的粒子组成,并测出了该粒子的比荷 |
利用图(a)所示的装置验证动量守恒定律。在图(a)中,气垫导轨上有、两个滑块,滑块右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间。
实验测得滑块质量,滑块的质量,遮光片的宽度;打点计时器所用的交流电的频率为。将光电门固定在滑块的右侧,启动打点计时器,给滑块一向右的初速度,使它与相碰;碰后光电计时器显示的时间为,碰撞前后打出的纸带如图(b)所示。
若实验允许的相对误差绝对值最大为,本实验是否在误差范围内验证了动量守恒定律?写出运算过程。