高考数学(理)一轮配套特训:8-7抛物线
以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是( )
A.(0,2) | B.(2,0) | C.(4,0) | D.(0,4) |
已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( )
A. | B. | C. | D.1 |
已知点A(3,4),F是抛物线y2=8x的焦点,M是抛物线上的动点,当|AM|+|MF|最小时,M点坐标是( )
A.(0,0) | B.(3,2) | C.(2,4) | D.(3,-2) |
设抛物线y2=2px(p>0)的焦点为F,点A在y轴上,若线段FA的中点B在抛物线上,且点B到抛物线准线的距离为,则点A的坐标为( )
A.(0,±2) | B.(0,2) |
C.(0,±4) | D.(0,4) |
对于抛物线y2=4x上任意一点Q,点P(a,0)满足|PQ|≥|a|,则a的取值范围是( )
A.(-∞,0) | B.(-∞,2] | C.[0,2] | D.(0,2) |
直线4kx-4y-k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于( )
A. B.2 C. D.4
设斜率为1的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为8,则a的值为________.
动直线l的倾斜角为60°,且与抛物线x2=2py(p>0)交于A,B两点,若A,B两点的横坐标之和为3,则抛物线的方程为________.
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(,m),A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).
如图,F为抛物线y2=4x的焦点,A,B,C在抛物线上,若++=0,则||+||+||=( )
A.6 | B.4 | C.3 | D.2 |
已知直线l1:4x-3y+11=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2 | B.3 | C. | D. |
过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A,B两点,若线段AB的长为8,则p=________.