高考数学(理)一轮配套特训:10-4随机事件的概率
把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.事件“甲分得白球”与事件“乙分得白球”是( )
A.对立事件 | B.不可能事件 |
C.互斥事件 | D.必然事件 |
掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上,事件N:至少一次正面朝上,则下列结果正确的是( )
A.P(M)=,P(N)= | B.P(M)=,P(N)= |
C.P(M)=,P(N)= | D.P(M)=,P(N)= |
5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为( )
A. | B. | C. | D. |
如图所示的茎叶图表示的是甲、乙两人在五次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为( )
A. | B. | C. | D. |
甲、乙两人一起去游玩,他们约定各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们在同一个景点的概率是( )
A. | B. | C. | D. |
甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{0,1,2,3},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )
A. | B. | C. | D. |
设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为( )
A.3 | B.4 | C.2和5 | D.3和4 |
有5个数成公差不为0的等差数列,这5个数的和为15,若从这5个数中随机抽取一个数,则它小于3的概率是________.
从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
频数 |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.
(1)若用数组(x,y,z)中的x,y,z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;
(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.
一盒中共装有除颜色外其余均相同的小球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A.都不是一等品 | B.恰有1件一等品 |
C.至少有1件一等品 | D.至多有1件一等品 |
有一对酷爱运动的年轻夫妇让他们12个月大的婴儿拼排3块分别写有“20”,“14”和“北京”的字块,如果婴儿能够排成“2014北京”或者“北京2014”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )
A. | B. | C. | D. |
在不等式组所表示的平面区域内的所有格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能作为一个三角形的3个顶点的概率为________.