高考数学(理)一轮总复习专题突破六 高考概率与统计
若n的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( )
A. | B. | C.- | D. |
在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为( )
A. | B. | C. | D. |
如图是统计高三年级2 000名同学某次数学考试成绩的程序框图,S代表分数,若输出的结果是560,则这次考试数学分数不低于90分的同学的概率是( )
A.0.28 | B.0.38 | C.0.72 | D.0.62 |
签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为( )
A.5 | B.5.25 | C.5.8 | D.4.6 |
某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )
A.这种抽样方法是一种分层抽样 |
B.这种抽样方法是一种系统抽样 |
C.这五名男生成绩的方差大于这五名女生成绩的方差 |
D.该班男生成绩的平均数小于该班女生成绩的平均数 |
某校开展“爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.
从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=________.
某工厂经过技术改造后,降低了能源消耗,经统计该厂某种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)有如下几组样本数据:
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
根据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7.已知该产品的年产量为10吨,则该工厂每年大约消耗的汽油为________吨.
假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:
男生
女生
(1)根据以上两个直方图完成下面的2×2列联表:
成绩性别 |
优秀 |
不优秀 |
总计 |
男生 |
|
|
|
女生 |
|
|
|
总计 |
|
|
|
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
(注:
k0 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
P(K2≥k0) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
K2=,其中n=a+b+c+d.)
(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.
已知x,y满足,(x∈Z,y∈Z),每一对整数(x,y)对应平面上一个点,则过这些点中的其中3个点可作不同的圆的个数为( )
A.45 | B.36 | C.30 | D.27 |
执行如图的程序框图,若输入的ε的值为0.25,则输出的n的值为________.