江苏省无锡市锡北片九年级4月中考模拟数学试卷
2014年3月,我省确诊4例感染“H7N9禽流感”病例,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.000 000 12米,这一直径用科学记数法表示为( )
A.1.2×10-9米 | B.1.2×10-8米 | C.1.2×10-7米 | D.12×10-8米 |
已知半径分别为3 cm和1cm的两圆相交,则它们的圆心距可能是( )
A.1 cm | B.3 cm | C.5cm | D.7cm |
如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为( )
A.1 | B.2 | C.3 | D.4 |
用一把带有刻度的直尺,①可以画出两条平行的直线与b,如图⑴;②可以画出∠AOB的平分线OP,如图⑵所示;③可以检验工件的凹面是否为半圆,如图⑶所示;④可以量出一个圆的半径,如图⑷所示.这四种说法正确的个数有 ( )
A.4个 | B.3个 | C.2个 | D.1个 |
一次函数y=ax+b(a>0)、二次函数y=ax+bx和反比例函数(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是( )
A.a >b>0 | B.a>k>0 | C.b=2a+k | D.a="b+k" |
在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作弧,如图所示,若AB=4,AC=2,,则S3-S4的值是( )
A. | B. | C. | D. |
一次考试中7名学生的成绩(单位:分)如下:78, 62,71, 61,85,92,85,这7名学生的极差是 分.
如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于__ ___cm.
如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为___ ___.
如图,在平面直角坐标系中,⊙O的半径为2,AC、BD是⊙O的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值与最小值的差为___ ___.
在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是_ ;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).
“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大。环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:
类别 |
组别 |
PM2.5日平均浓度值 (微克/立方米) |
频数 |
频率 |
A |
1 |
15~30 |
2 |
0.08 |
2 |
30~45 |
3 |
0.12 |
|
B |
3 |
45~60 |
a |
b |
4 |
60~75 |
5 |
0.20 |
|
C |
5 |
75~90 |
6 |
c |
D |
6 |
90~105 |
4 |
0.16 |
合计 |
以上分组均含最小值,不含最大值 |
25 |
1.00 |
根据图表中提供的信息解答下列问题:
(1)统计表中的= _ ,b= _ ,c= _ ;
(2)在扇形统计图中,A类所对应的圆心角是 _ 度;
(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?
如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.
(2)若cosB=,BP=6,AP=1,求QC的长.
小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后分钟时,他所在的位置与家的距离为千米,且与之间的函数关系的图像如图中的折线段所示.
(1)试求折线段所对应的函数关系式;
(2)请解释图中线段的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离(千米)与小明出发后的时间(分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注)
等腰△ABC中,AB=AC,边AB绕点A逆时针旋转角度m得到线段AD.
(1)如图1,若∠BAC=30°,30°<m<180°,连接BD,请用含m的式子表示∠DBC的度数;
(2)如图2,若∠BAC=60°,0°<m<360°,连接BD,DC,直接写出△BDC为等腰三角形时m所有可能的取值___ __;
(3)如图3,若∠BAC=90°,射线AD与直线BC相交于点E,是否存在旋转角度m,使,若存在,求出所有符合条件的m的值,若不存在,请说明理由.
一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).
探究 如图1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:
(1)CQ与BE的位置关系是___ ___,BQ的长是____ ___dm;
(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=,tan37°=)
拓展 在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.
延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.