北京市昌平区八年级下学期期末考试数学试卷
函数y=的自变量x的取值范围是( )
A.x>﹣3 | B.x<﹣3 | C.x≠﹣3 | D.x≥﹣3 |
已知▱ABCD中,∠A+∠C=200°,则∠B的度数是( )
A.100° | B.160° | C.80° | D.60° |
一次函数y=2x﹣3的图象不经过( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
用配方法解一元二次方程x2+8x+7=0,则方程可变形为( )
A.(x﹣8)2=16 | B.(x+8)2=57 | C.(x﹣4)2=9 | D.(x+4)2=9 |
直线y=2x+4与两坐标轴围成的三角形面积是( )
A.2 | B.4 | C.8 | D.16 |
某校要从甲、乙、丙、丁四名学生中选拔一名参加区组织的“我的中国梦”演讲比赛,经过校内多轮选拔赛每名学生的平均成绩与方差S2如下表所示.如果要选择一个平均成绩高且发挥稳定的人参赛,则这个人应是( )
|
甲 |
乙 |
丙 |
丁 |
8 |
9 |
9 |
8 |
|
S2 |
1 |
1 |
1.2 |
1.3 |
A.甲 B.乙 C.丙 D.丁
发射一枚炮弹,经过x秒后炮弹的高度为y米,x,y满足y=ax2+bx,其中a,b是常数,且a≠0.若此炮弹在第6秒与第14秒时的高度相等,则炮弹达到最大高度的时刻是( )
A.第8秒 | B.第10秒 | C.第12秒 | D.第15秒 |
如图,在矩形ABCD中,AB=2cm,BC=4cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度分别沿B→C,C→D运动,点F运动到点D时停止,点E运动到点C时停止.设运动时间为t(单位:s),△OEF的面积为S(单位:cm2),则S与t的函数关系可用图象表示为( )
直线l1:y=kx与直线l2:y=ax+b在同一平面直角坐标系中的图象如图,则关于x的不等式ax+b>kx的解集为 .
某篮球兴趣小组有15名同学,在一次投篮比赛中,成绩如下表:
进球数 |
4 |
5 |
7 |
9 |
10 |
人数 |
1 |
4 |
5 |
4 |
1 |
则这15名同学平均进球数为 .
含60°角的菱形A1B1C1B2,A2B2 C2B3,A3B3C3B4,…,按如图的方式放置在平面直角坐标系xOy中,点A1,A2,A3,…,和点B1,B2,B3,B4,…,分别在直线y=kx和x轴上.已知B1(2,0),B2(4,0),则点A1的坐标是 ;点A3的坐标是 ;点An的坐标是 (n为正整数).
已知抛物线y=x2﹣4x+3.
(1)求该抛物线的顶点坐标和对称轴方程;
(2)求该抛物线与x轴的交点坐标;
(3)当x为何值时,y≤0.
关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,求出a的值和方程的另一个根.
已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.
如图,直线y=kx﹣2与x轴交于点A(1,0),与y轴交于点B,若直线AB上的点C在第一象限,且S△BOC=3,求点C的坐标.
摆棋子游戏:现有4个棋子A,B,C,D,要求棋子A必须摆放在第一位置,其余3个随机摆放在第二、三、四的位置.
(1)请你列举出所有摆放的可能情况;
(2)求出棋子C摆放在偶数位置的概率.
列方程解应用题:
A地区2011年公民出境旅游总人数约600万人,2013年公民出境旅游总人数约864万人,若2012年、2013年公民出境旅游总人数逐年递增,请解答下列问题:
(1)求2012、2013这两年A地区公民出境旅游总人数的年平均增长率;
(2)如果2014年仍保持相同的年平均增长率,请你预测2014年A地区公民出境旅游总人数约多少万人?
如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),
直线y=kx+b经过B,D两点.
(1)求直线y=kx+b的解析式;
(2)将直线y=kx+b平移,若它与矩形有公共点,直接写出b的取值范围.
已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.
【问题提出】如果我们身边没有量角器和三角板,如何作15°大小的角呢?
【实践操作】如图.
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开,得到AD∥EF∥BC.
第二步:再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM.折痕BM 与折痕EF相交于点P.连接线段BN,PA,得到PA=PB=PN.
【问题解决】
(1)求∠NBC的度数;
(2)通过以上折纸操作,还得到了哪些不同角度的角?请你至少再写出两个(除∠NBC的度数以外).
(3)你能继续折出15°大小的角了吗?说说你是怎么做的.
已知关于x的方程mx2﹣3(m+1)x+2m+3=0.
(1)求证:无论m取任何实数,该方程总有实数根;
(2)若m≠0,抛物线y=mx2﹣3(m+1)x+2m+3与x轴的交点到原点的距离小于2,且交点的横坐标是整数,求m的整数值.
如图,已知正方形ABCD,AC、BD相交于点O,E为AC上一点,AH⊥EB交EB于点H,AH交BD于点F.
(1)若点E在图1的位置,判断OE与OF的数量关系,并证明你的结论;
(2)若点E在AC的延长线上,请在图2中按题目要求补全图形,判断OE与OF的数量关系,并证明你的结论.