北京市顺义区八年级下学期期末考试数学试卷
下列各图形中不是中心对称图形的是( )
A.等边三角形 | B.平行四边形 | C.矩形 | D.正方形 |
点P(﹣1,2)关于y轴对称点的坐标是( )
A.(1,2) | B.(﹣1,﹣2) | C.(1,﹣2) | D.(2,﹣1) |
已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )
A.3 | B.4 | C.6 | D.5 |
在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.甲比乙稳定 | B.乙比甲稳定 |
C.甲和乙一样稳定 | D.甲、乙稳定性没法对比 |
如图,在矩形ABCD中,对角线AC,BD相交于点O,如果∠AOD=120°,AB=2,那么BC的长为( )
A.4 | B. | C.2 | D. |
若关于x的方程3x2+mx+2m﹣6=0的一个根是0,则m的值为( )
A.6 | B.3 | C.2 | D.1 |
如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
A.点C | B.点O | C.点E | D.点F |
如图,平行四边形ABCD中,E是边AB的中点,F是对角线BD的中点,若EF=3,则BC= .
将一元二次方程x2+2x﹣4=0用配方法化成(x+a)2=b的形式,则a= ,b= .
如图,菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC= 度.
如图,在平面直角坐标系xOy中,有一边长为1的正方形OABC,点B在x轴的正半轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则B2的坐标是 ;B2014的坐标是 .
如图,在▱ABCD中,E、F分别是AD,BC边上的点,且∠1=∠2,求证:四边形BEDF是平行四边形.
如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(1,0),与y轴交于点B(0,2),求一次函数y=kx+b的解析式及线段AB的长.
某路段的雷达测速器对一段时间内通过的汽车进行测速,将监测到的数据加以整理,得到不完整的图表:
时速段 |
频数 |
频率 |
30~40 |
10 |
0.05 |
40~50 |
36 |
0.18 |
50~60 |
|
0.39 |
60~70 |
|
|
70~80 |
20 |
0.10 |
总 计 |
200 |
1 |
注:30~40为时速大于或等于30千米且小于40千米,其它类同.
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果此路段汽车时速达到或超过60千米即为违章,那么违章车辆共有多少辆?
如图,平行四边形ABCD的边CD的垂直平分线与边DA,BC的延长线分别交于点E,F,与边CD交于点O,连结CE,DF.
(1)求证:DE=CF;
(2)请判断四边形ECFD的形状,并证明你的结论.
某村计划建造了如图所示的矩形蔬菜温室,温室的长是宽的4倍,左侧是3米宽的空地,其它三侧各有1米宽的通道,矩形蔬菜种植区域的面积为288平方米.求温室的长与宽各为多少米?
已知:关于x的方程mx2+(m﹣3)x﹣3=0(m≠0).
(1)求证:方程总有两个实数根;
(2)如果m为正整数,且方程的两个根均为整数,求m的值.
在平面直角坐标系系xOy中,直线y=2x+m与y轴交于点A,与直线y=﹣x+4交于点B(3,n),P为直线y=﹣x+4上一点.
(1)求m,n的值;
(2)当线段AP最短时,求点P的坐标.
如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
(1)求证:BF=AE+FG;
(2)若AB=2,求四边形ABFG的面积.
甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.
(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒;
(2)求乙跑步的速度及乙在途中等候甲的时间;
(3)求乙出发多长时间第一次与甲相遇?