陕西省咸阳市高二下学期期末质量检测理科数学试卷
若x+yi=1+2xi(x,y∈R),则x﹣y等于( )
A.0 | B.﹣1 | C.1 | D.2 |
某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )
A.第5次击中目标 | B.第5次未击中目标 |
C.前4次均未击中目标 | D.第4次击中目标 |
下列式子成立的是( )
A.P(A|B)=P(B|A) B.0<P(B|A)<1
C.P(AB)=P(A)•P(B|A) D.P(A∩B|A)=P(B)
在的展开式中,x6的系数是( )
A.﹣27 | B.27 | C.﹣9 | D.9 |
曲线f(x)=x3+x﹣2在p0处的切线平行于直线y=4x﹣1,则p0的坐标为( )
A.(1,0) | B.(2,8) |
C.(1,0)或(﹣1,﹣4) | D.(2,8)或(﹣1,﹣4) |
投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n﹣mi)为实数的概率为( )
A. | B. | C. | D. |
学校周三要排语文、数学、英语、物理、化学和生物6门不同的课程,若第一节不排语文且第六节排生物,则不同的排法共有( )
A.96种 | B.120种 | C.216种 | D.240种 |
有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃) |
﹣2 |
﹣3 |
﹣5 |
﹣6 |
销售额(万元) |
20 |
23 |
27 |
30 |
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=x+a的系数.则预测平均气温为﹣8℃时该商品销售额为( )
A.34.6万元 B.35.6万元 C.36.6万元 D.37.6万元
设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是( )
李明同学衣服上有左、右两个口袋,左口袋有15张不同的英语单词卡片,右口袋有20张不同的英语单词卡片,从这两个口袋任取一张,共有 _________ 种不同的取法.
若函数f(x)=xlnx在x0处的函数值与导数值之和等于1,则x0的值等于 _________ .
观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此规律,第n个等式为 _________ .
由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“•=•”;
②“(m+n)t=mt+nt”类比得到“(+)•=•+•”;
③“t≠0,mt=nt⇒m=n”类比得到“≠0,•=•⇒=”;
④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.
以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育”.
根据已知条件完成下面的2×2列联表:
是否体育迷 性别 |
非体育迷 |
体育迷 |
总计 |
男 |
( _________ ) |
( _________ ) |
45 |
女 |
( _________ ) |
10 |
55 |
总计 |
( _________ ) |
( _________ ) |
100 |
设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?
(2)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?
我们已经学过了等差数列,你是否想到过有没有等和数列呢?
(1)类比“等差数列”给出“等和数列”的定义;
(2)探索等和数列{an}的奇数项与偶数项各有什么特点?并加以说明.
设函数f(x)=x3﹣x2﹣2x﹣.
(1)求函数f(x)的单调递增、递减区间;
(2)当x∈[﹣1,1]时,f(x)<m恒成立,求实数m的取值范围.
已知函数f(x)=在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立.
(1)求红队至少一名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.