山东省威海市高二下学期期末考试理科数学试卷
如图,平行四边形ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有( )
A.3对 | B.4对 | C.5对 | D.6对 |
曲线经过伸缩变换T得到曲线
,那么直线
经过伸缩变换T得到的直线方程为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序
实施时必须相邻,请问实验顺序的编排方法共有 ( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是 则在这段时间内吊灯能照明的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知是定义在
上的非负可导函数,且满足
,对任意正数
,若
,则必有( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知函数表示过原点的曲线,且在
处的切线的倾斜角均为
,有以下命题:
①的解析式为
;
②的极值点有且只有一个;
③的最大值与最小值之和等于零;
其中正确命题的序号为_ .
设,其中
为正整数.
(1)求,
,
的值;
(2)猜想满足不等式的正整数
的范围,并用数学归纳法证明你的猜想.
经过点,倾斜角为
的直线
,与曲线
:
(
为参数)相交于
两点.
(1)写出直线的参数方程,并求当
时弦
的长;
(2)当恰为
的中点时,求直线
的方程;
(3)当时,求直线
的方程;
(4)当变化时,求弦
的中点的轨迹方程.
设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量
.
(1)写出的可能取值,并求随机变量
的最大值;
(2)求事件“取得最大值”的概率;
(3)求的分布列和数学期望与方差.
如图,已知⊙与⊙
外切于点
,
是两圆的外公切线,
,
为切点,
与
的延长线相交于点
,延长
交⊙
于 点
,点
在
延长线上.
(1)求证:是直角三角形;
(2)若,试判断
与
能否一定垂直?并说明理由.
(3)在(2)的条件下,若,
,求
的值.