人教A版选修一1-2第一章1.2练习卷
春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
做不到“光盘” 能做到“光盘”
男 |
45 |
10 |
|
女 |
30 |
15 |
|
P(K2≥k) |
0.10 |
0.05 |
0.025 |
k |
2.706 |
3.841 |
5.024 |
附:
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
以下四个命题中:
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x1,x2,x3,…,xn的方差为1,则2x1,2x2,2x3,…,2xn的方差为2;
④对分类变量X与Y的随机变量k2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
其中真命题的个数为( )
A.1 | B.2 | C.3 | D.4 |
下列四个命题中
①设有一个回归方程y=2﹣3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“∃x0∈R,x02﹣x0﹣1>0“的否定¬P:“∀x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(﹣l<X<0)=﹣p;
④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系.
其中正确的命题的个数有( )
附:本题可以参考独立性检验临界值表
|
P(K2≥k) |
0.5 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.535 |
7.879 |
10. |
|
828 |
|
|
|
|
|
|
|
|
|
|
|
|
A.1个 B.2个 C.3个 D.4个
为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表.
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
则至少有( )的把握认为喜爱打篮球与性别有关.
A.95% B.99% C.99.5% D.99.9%
通过随机询问100名性别不同的小学生是否爱吃零食,得到如下的列联表:
|
男 |
女 |
总计 |
爱好 |
10 |
40 |
50 |
不爱好 |
20 |
30 |
50 |
总计 |
30 |
70 |
100 |
P(K2≥k) |
0.10 |
0.05 |
0.025 |
k |
2.706 |
3.841 |
50.24 |
由K2=算得K2=≈4.762
参照附表,得到的正确结论( )
A.在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”
B.在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”
C.有97.5%以上的把握认为“是否爱吃零食与性别有关”
D.有97.5%以上的把握认为“是否爱吃零食与性别无关”
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表:
|
性别 |
|
是否需要志愿者 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
由算得,
附表:
P(K2≥k) |
0.050 |
0.010 |
0.001 |
k |
3.841 |
6.635 |
10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”
C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”
D.有99%以上的把握认为“需要志愿者提供帮助与性别无关”
由于工业化城镇化的推进,大气污染日益加重,空气质量逐步恶化,雾霾天气频率增大,大气污染可引起心悸、胸闷等心脏病症状.为了解某市患心脏病是否与性别有关,在某医院心血管科随机的对入院50位进行调查得到了如表:
|
患心脏病 |
不患心脏病 |
合计 |
男 |
20 |
5 |
25 |
女 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
参考临界值表:
p(p2≥k) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
K |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:K2= 其中n ="a" +b +c +d).
问有多大的把握认为是否患心脏病与性别有关.答:( )
A.95% B.99% C.99.5% D.99.9%
随机调查某校110名学生是否喜欢跳舞,由列联表和公式K2=计算出K2,并由此作出结论:“有99%的可能性认为学生喜欢跳舞与性别有关”,则K2可以为( )
附表:
P(K2≥k0) |
0.10 |
0.05 |
0.025 |
0.010 |
k0 |
2.706 |
3.841 |
5.024 |
6.635 |
A.3.565 B.4.204 C.5.233 D.6.842
某部门为了了解青年人喜欢户外运动是否与性别有关,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论为:有( )把握认为“喜欢户外运动与性别有关”.
附:(独立性检验临界值表)
P(K2≥k0) |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k0 |
3.841 |
5.024 |
6.636 |
7.879 |
10.828 |
A.0.1% B.1% C.99% D.99.9%
某中学采取分层抽样的方法从高二学生中按照性别抽出20名学生,其选报文科、理科的情况如下表所示,
男 女
文科 2 5
理科 10 3
则以下判断正确的是( )
参考公式和数据:k2=
p(k2≥k0) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k0 |
2.07 |
2.71 |
3.84 |
5.02 |
6.64 |
7.88 |
10.83 |
A.至少有97.5%的把握认为学生选报文理科与性别有关
B.至多有97.5%的把握认为学生选报文理科与性别有关
C.至少有95%的把握认为学生选报文理科号性别有关
D.至多有95%的把握认为学生选报文理科与性别有关
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系;
其中错误的个数是( )
A.0 | B.1 | C.2 | D.3 |
某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有( )的把握认为“学生性别与支持该活动有关系”.
P(k2≥k0) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k0 |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
A.0.1% B.1% C.99% D.99.9%
在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数:)
|
物理成绩好 |
物理成绩不好 |
合计 |
数学成绩好 |
18 |
7 |
25 |
数学成绩不好 |
6 |
19 |
25 |
合计 |
24 |
26 |
50 |
数学成绩与物理成绩之间有把握有关?( )
A.90% B.95% C.97.5% D.99%
为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表:
|
优秀 |
非优秀 |
总计 |
A班 |
14 |
6 |
20 |
B班 |
7 |
13 |
20 |
C班 |
21 |
19 |
40 |
附:参考公式及数据:
(1)卡方统计量(其中n=n11+n12+n21+n22);
(2)独立性检验的临界值表:
P(x2≥k0) |
0.050 |
0.010 |
K0 |
3.841 |
6.635 |
则下列说法正确的是( )
A.有99%的把握认为环保知识测试成绩与专业有关
B.有99%的把握认为环保知识测试成绩与专业无关
C.有95%的把握认为环保知识测试成绩与专业有关
D.有95%的把握认为环保知识测试成绩与专业无关
通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:
|
男 |
女 |
总计 |
走天桥 |
40 |
20 |
60 |
走斑马线 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
由,算得
参照独立性检验附表,得到的正确结论是( )
A.有99%的把握认为“选择过马路的方式与性别有关”
B.有99%的把握认为“选择过马路的方式与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关”
通过随机询问100名性别不同的大学生是否爱好踢毪子运动,得到如下的列联表:
|
男 |
女 |
总计 |
爱好 |
10 |
40 |
50 |
不爱好 |
20 |
30 |
50 |
总计 |
30 |
70 |
100 |
附表:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
k |
2.706 |
3.841 |
5.024 |
随机变量,经计算,统计量K2的观测值k≈4.762,参照附表,得到的正确结论是( )
A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C.有97.5%以上的把握认为“爱好该项运动与性别有关”
D.有97.5%以上的把握认为“爱好该项运动与性别无关”
通过随机询问110名大学生是否爱好某项运动,得到如下的列联表:
|
男 |
女 |
总计 |
爱好 |
40 |
20 |
60 |
不爱好 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
由上表算得k≈7.8,因此得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅表格来确定“X和Y有关系”的可信度.如果k>3.84,那么有把握认为“X和Y有关系”的百分比为( )
P(K2>k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.84 |
5.024 |
6.635 |
7.879 |
10.83 |
A.5% B.75% C.99.5% D.95%
以下五个命题
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②样本方差反映了样本数据与样本平均值的偏离程度;
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;
④在回归直线方程中,当解释变量x每增加一个单位时,预报变量增加0.1个单位;
⑤在一个2×2列联表中,由计算得k2=13.079,则其两个变量间有关系的可能性是90%以上.
其中正确的是( )
A.②③④⑤ | B.①③④ | C.①③⑤ | D.②④ |