广东省惠州市高三第二次调研考试理科数学试卷
复数(为虚数单位)在复平面上对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )
A. | B. |
C. | D. |
设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数 (表示不大于的最大整数)可以表示为( )
A. | B. | C. | D. |
(几何证明选讲)如图所示,⊙的两条切线和相交于点,与⊙相切于两点,是⊙上的一点,若,则________.(用角度表示)
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上件产品作为样本称出它们的重量(单位:克),重量的分组区间为,, ,,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过克的产品数量;
(2)在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列;
(3)从该流水线上任取件产品,求恰有件产品的重量超过克的概率.
如图,四棱锥中,底面为平行四边形,,,,底面.
(1)证明:;
(2)若,求二面角的余弦值.
(本题满分分)设数列的前项和为,已知,,.
(1)求数列的通项公式;
(2)证明:对一切正整数,有.
如图,已知椭圆:,其左右焦点为及,过点的直线交椭圆于两点,线段的中点为,的中垂线与轴和轴分别交于两点,且、、构成等差数列.
(1)求椭圆的方程;
(2)记△的面积为,△(为原点)的面积为.试问:是否存在直线,使得?说明理由.