新人教A版选修4-5 4.2数学归纳法证明不等式举例
用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( )
A.2k﹣1 | B.2k﹣1 | C.2k | D.2k+1 |
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n﹣1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是 .
已知正项数列{an}满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{}的前n项积为Tn,求证:当x>0时,对任意的正整数n都有Tn>.
在数列|an|中,a1=t﹣1,其中t>0且t≠1,且满足关系式:an+1(an+tn﹣1)=an(tn+1﹣1),(n∈N+)
(1)猜想出数列|an|的通项公式并用数学归纳法证明之;
(2)求证:an+1>an,(n∈N+).
已知函数f(x)=(x≠﹣1).设数列{an}满足a1=1,an+1=f(an),数列{bn}满足bn=|an﹣|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用数学归纳法证明bn≤;
(Ⅱ)证明Sn<.