新人教A版选修4-6 4.1信息的加密与去密练习卷
为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem),其加密、解密原理如图:
现在加密密钥为y=loga(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为( )
A.12 | B.13 | C.14 | D.15 |
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )
A.4,6,1,7 | B.7,6,1,4 | C.6,4,1,7 | D.1,6,4,7 |
为了确保神州七号飞船发射时的信息安全,信息须加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数(见下表):
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
10 |
21 |
22 |
23 |
24 |
25 |
26 |
通过变换公式:,将明文转换成密文,如=17,即h变换成q;,即e变换成c.若按上述规定,若将明文译成的密文是shxc,那么原来的明文是( )
A.love B.live C.move D.life
为了确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文2a+b,2b+c,c+5d,2d,例如,明文1,2,3,4对应密文4,7,23,8,当接收方收到密文7,13,38,14时,则解密得到的明文是( )
A.27,64,108,24 | B.64,27,108,24 |
C.1,3,5,7 | D.1,5,3,7 |
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d→密文a+b,b+2c,2c+3d,d2,当密文为6,9,29,49时,则明文为( )
A.5,1,7,4 | B.5,1,4,7 | C.1,4,5,7 | D.5,4,1,7 |
为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:
明文密文密文明文
现在加密密钥为y=loga(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得到明文为( )
A.12 | B.13 | C.14 | D.15 |
为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:
已知加密为y=ax﹣2(x为明文、y为密文),如果明文“3”通过加密后得到密文为“6”,
再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是 .
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 .
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则如图所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文9,10,22,24时,则解密得到的明文为 .
有一密码把英文的明文(真实文)按字母分解,其中a,b,…,z的26个字母(不论大小写)分别对应着1,2,…,26个自然数,见下表:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
(x是奇数)(x是偶数)给出如下一个变换公式:,如,即h变成q.按上述规定,若将明文译成密文是shxc,那么原来的明文是 .
为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:现在加密密钥为y=loga(x+4),明文密文密文明文.如上所示,明文“4”通过加密加密后得到“3”再发送,接受方通过解密钥解密得明文“4”,问若接受方接到密文为“4”,则解密后得明文是 .
为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=loga(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为 .
在密码学中,你直接可以看到的内容为明码,对明码进行某种处理后得到的内容为密码,有一种密码,将英文的26个字母a、b、c,…,z(不论大小写)依次对应1,2,3,…,26,这26个自然数,见表格:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
现给出一个变换公式:x'=,可将英文的明文(明码)转换成密码,按上述规定,若将英文的明文译成的密码是shxc,那么原来的明文是 .
为了保证信息安全传送,有一种称为秘密密钥密码系统(Private Key Cryptosystem),其加密、解密原理如下示意图:
现在加密密钥为y=2x﹣1,如上所示:明文“5”通过加密后得密文“9”,再发送,接收方通过解密密钥解密得明文“5”.问:若接收方接到密文为“17”,则解密后的明文为 .
为保证信息安全,信息传输必须使用加密方式.某种初级加密,解密原理如下:明文密文密文明文.已知加密为y=ax﹣2(x为明文,y为密文),如果明文“3“通过加密后得到密文为“6“,再发送,接受方通过解密得到明文“3“,若接受方接到密文为“1022“,则原发的明文是 .
为了保证信息安全传输,设计一种密码系统,其加密、解密原理如下图:
现在加密方式为:把发送的数字信息X,写为“a11a21a12a22”的形式,先左乘矩阵A=,再左乘矩阵B=,得到密文Y,现在已知接收方得到的密文4,12,36,72,试破解该密码.