优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2021-09-09
  • 题量:21
  • 年级:高三
  • 类型:月考试卷
  • 浏览:801

安徽省马鞍山市高中毕业班第三次质检理科数学试卷

1、

已知是虚数单位,则 =( )

A.1 B. C. D.
  • 题型:1
  • 难度:容易
  • 人气:1412
2、

下列函数中,既是奇函数又在其定义域上是增函数的是( )

A. B. C. D.
  • 题型:1
  • 难度:中等
  • 人气:1314
3、

已知,,则的( )

A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
  • 题型:1
  • 难度:较易
  • 人气:741
4、

右图是一算法的程序框图,若此程序运行结果为,则在判断框中应填入关于的判断条件是(  )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:746
5、

已知函数的图象经过点,则该函数的一条对称轴方程为(  )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1991
6、

右图是一个几何体的三视图,则该几何体体积为( )

A.15 B.16 C.17 D.18
  • 题型:1
  • 难度:中等
  • 人气:1632
7、

已知直线(t为参数)与曲线交于两点,则( )

A.1 B. C.2 D.
  • 题型:1
  • 难度:较易
  • 人气:1768
8、

函数的图象大致为()

  • 题型:1
  • 难度:中等
  • 人气:1241
9、

某次联欢会要安排个歌舞类节目,个小品类节目和个相声类节目的演出顺序,
则同类节目不相邻的排法种数是( )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:185
10、

已知为双曲线的右焦点,点,过的直线与双曲线的一条渐近线在轴右侧的交点为,若,则此双曲线的离心率是(  )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:995
11、

设随机变量服从正态分布,且,则正数
=    .

  • 题型:2
  • 难度:较易
  • 人气:1764
12、

已知二项式的展开式的系数之和为,则展开式中含项的系数是    .

  • 题型:2
  • 难度:中等
  • 人气:1264
13、

如图,在边长为(为自然对数的底数)的正方形中随机取一点,则它取自阴影部分的概率为    .

  • 题型:2
  • 难度:较难
  • 人气:582
14、

为正实数,则的最小值为    .

  • 题型:2
  • 难度:较易
  • 人气:1889
15、

如图,四边形是正方形,以为直径作半圆(其中 的中点),若动点从点出发,按如下路线运动:

,其中,则下列判断中:
①不存在点使
②满足的点有两个;
的最大值为3; 
④ 若满足的点不少于两个,则.
正确判断的序号是    .(请写出所有正确判断的序号)

  • 题型:2
  • 难度:较难
  • 人气:1465
16、

(本小题满分12分)
中,角A、B、C的对边分别为a、b、c,面积为S,已知
(Ⅰ)求证:成等差数列;
(Ⅱ)若 求.

  • 题型:14
  • 难度:较难
  • 人气:1129
17、

(本小题满分12分)
为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.

 
优秀人数
非优秀人数
总计
甲班
 
 
 
乙班
 
30
 
总计
60
 
 

(Ⅱ)现已知三人获得优秀的概率分别为,设随机变量表示三人中获得优秀的人数,求的分布列及期望.附: 


0.100
0.050
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

 

  • 题型:14
  • 难度:较难
  • 人气:666
18、

(本小题满分12分)
如图,已知,分别是正方形,的中点,交于点都垂直于平面,且中点.

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的余弦值.

  • 题型:14
  • 难度:较易
  • 人气:1152
19、

(本小题满分12分)
已知数列的前项和,且
(Ⅰ)求数列的通项公式;
(Ⅱ)令,是否存在,使得成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.

  • 题型:14
  • 难度:中等
  • 人气:160
20、

(本小题满分13分)
已知椭圆 的左、右顶点分别为,,右焦点为,点是椭圆上异于的动点,过点作椭圆的切线,直线与直线的交点为,且当时,.
(Ⅰ)求椭圆的方程;
(Ⅱ)当点运动时,试判断以为直径的圆与直线的位置关系,并证明你的结论.

  • 题型:14
  • 难度:较易
  • 人气:1592
21、

(本小题满分14分)
已知函数,其中为常数.
(Ⅰ)若的图像在处的切线经过点(3,4),求的值;
(Ⅱ)若,求证:
(Ⅲ)当函数存在三个不同的零点时,求的取值范围.

  • 题型:14
  • 难度:中等
  • 人气:960