[江苏]2013届江苏省如皋市东部共同体九年级上学期期中考试数学试卷
抛物线的顶点坐标是( )
A.(-2,3) | B.(2,3) | C.(-2,-3) | D.(2,-3) |
- 题型:1
- 难度:容易
- 人气:1275
下列说法正确的是( )
A.垂直于半径的直线是圆的切线 | B.经过三点一定可以作圆 |
C.弦是直径 | D.每个三角形都有一个内切圆 |
- 题型:1
- 难度:较易
- 人气:2027
下列事件发生的概率为0的是( )
A.掷一枚均匀的硬币两次,至少有一次反面朝上; |
B.今年冬天如皋会下雪; |
C.掷两个均匀的骰子,朝上面的点数之和为1; |
D.一个转盘被分成3个扇形,按红、白、黄排列,转动转盘,指针停在红色区域 |
- 题型:1
- 难度:容易
- 人气:1927
如图,AB.CD是⊙O的两条弦,连接AD.BC.若∠BAD=60°,则∠BCD的度数为( )
A.40° B.50° C.60° D.70°
- 题型:1
- 难度:容易
- 人气:976
二次函数的图象如图所示,则下列关系式不正确的是( )
A.<0 | B.>0 |
C.>0 | D.>0 |
- 题型:1
- 难度:中等
- 人气:2053
从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:595
已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是( )
A.相切 | B.相离 | C.相离或相切 | D.相切或相交 |
- 题型:1
- 难度:较易
- 人气:1930
在平面直角坐标系中,将抛物线先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为 ( )
A. | B. |
C. | D. |
- 题型:1
- 难度:容易
- 人气:202
直角△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(阴影部分)的面积是( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:1186
函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是( )
- 题型:1
- 难度:较易
- 人气:1380
已知圆的内接正六边形的周长为18,那么圆的面积为 .
- 题型:2
- 难度:较易
- 人气:2068
已知二次函数当x>1时y随x增大而减小,当x<1时y随x增大而增大,请写出一个符合条件的二次函数的解析式 .
- 题型:2
- 难度:容易
- 人气:1770
某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为 .
- 题型:2
- 难度:较易
- 人气:1473
P为⊙O外一点,PA.PB分别切⊙O于点A.B,∠APB=50°,点C为⊙O上一点(不与A.B)重合,则∠ACB的度数为 .
- 题型:2
- 难度:中等
- 人气:1038
抛物线与x轴只有一个公共点,则m的值为 .
- 题型:2
- 难度:较易
- 人气:1440
如图在的网格图(每个小正方形的边长均为1个单位长度)中,⊙A的半径为2个单位长度,⊙B的半径为1个单位长度,要使运动的⊙B与静止的⊙A内切,应将⊙B由图示位置向左平移 个单位长度.
- 题型:2
- 难度:容易
- 人气:615
圆锥形冰淇淋盒的母线长是13cm,高是12cm,则该圆锥形的侧面积是 .
- 题型:2
- 难度:较易
- 人气:1210
已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1<y2成立的的取值范围是 .
- 题型:2
- 难度:较易
- 人气:1940
“如皋是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过三个十字路口,每个十字路口有红.绿两色交通信号灯,他在某天上学途中遇到三个红灯的概率为多少?(画出树形图分析所有可能结果)
- 题型:14
- 难度:中等
- 人气:1050
如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.
(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.
- 题型:14
- 难度:中等
- 人气:1155
已知抛物线的顶点(-1,-2)且图象经过(1,6),求此抛物线解析式.
(1)求该二次函数的解析式;
(2)当y>0时,x的取值范围.
- 题型:14
- 难度:中等
- 人气:1357
如图1,抛物线y= -x2+x+3与x轴交于A.C两点,与y轴交于B点,与直线y=kx+b交于A.D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1.1.3.4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
- 题型:14
- 难度:中等
- 人气:1967
如图,△ABC内接于半圆,AB为直径,设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.
求证:FD=FG.
- 题型:14
- 难度:中等
- 人气:1643
如图,抛物线的对称轴是直线,它与轴交于,两点,与轴交于点,点,的坐标分别是,.
(1) 求此抛物线对应的函数解析式;
(2) 若点是抛物线上位于轴上方的一个动点,求△ABP面积的最大值.
- 题型:14
- 难度:中等
- 人气:409
已知:如图,AB是⊙O的直径,点C.D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.
(1)试说明:DE=BF;
(2)若∠DAB=60°,AB=6,求△ACD的面积.
- 题型:14
- 难度:中等
- 人气:1613
如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点.
(1)求点的坐标;
(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.
- 题型:14
- 难度:中等
- 人气:1963
如图,已知直线PA交⊙O于A.B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CDPA⊥,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
- 题型:14
- 难度:中等
- 人气:1267
如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0)若抛物线过A.B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB? 若存在求出P的坐标,不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S的最大(小)值.
- 题型:14
- 难度:较难
- 人气:1013