优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2020-03-18
  • 题量:21
  • 年级:高二
  • 类型:期末考试
  • 浏览:1959

[江西]2012-2013学年江西省景德镇市高二下学期期末考试文科数学试卷

1、

设i是虚数单位,则复数的虚部为(     )

A.1 B. C.2 D.
  • 题型:1
  • 难度:容易
  • 人气:1019
2、

已知集合,则为(  )

A.   B.  C.   D.
  • 题型:1
  • 难度:较易
  • 人气:1066
3、

给出如下四个命题
①若“”为假命题,则均为假命题
②命题“若”的否命题为“若
③“任意”的否定是“存在
④在ABC中,“”是“”的充要条件
其中正确的命题的个数是( )

A.4 B.3 C.2 D.1
  • 题型:1
  • 难度:容易
  • 人气:2063
4、

一名小学生的年龄和身高(单位:cm)的数据如下:

年龄X
6
7
8
9
身高Y
118
126
136
144

 
由散点图可知,身高y与年龄x之间的线性回归直线方程为,预测该学生10岁时的身高为(    )
A. 154     B. 153 C. 152     D. 151

  • 题型:1
  • 难度:容易
  • 人气:330
5、

甲、乙两人在相同条件下进行射击,甲射中目标的概率为,乙射中目标的概率为,两人各射击1次,那么甲、乙至少有一个射中目标的概率为(    )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1651
6、

在下列图象中,二次函数y=ax2+bx与指数函数y=(x的图象只可能是(    )

  • 题型:1
  • 难度:较易
  • 人气:1351
7、

中,角A,B,C所对边分别为a,b,c,且,面积,则等于

A. B.5 C. D.25
  • 题型:1
  • 难度:较易
  • 人气:1699
8、

已知数列{}满足,且,则的值是

A. B. C.5 D.
  • 题型:1
  • 难度:较易
  • 人气:1796
9、

若函数,又,且的最小值为,则正数的值是(  )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1233
10、

已知是周期为的函数,当x∈()时,

A.c<b<a B.b<c<a C.c<a<b D.a<c<b
  • 题型:1
  • 难度:中等
  • 人气:1726
11、

如下图,在平面直角坐标系xOy中,锐角和钝角的终边分别与单位圆交于两点.若点的横坐标是,点的纵坐标是,则的值是___________.

  • 题型:2
  • 难度:容易
  • 人气:449
12、

已知某算法的流程图如图所示,则程序运行结束时输出的结果为      

  • 题型:2
  • 难度:容易
  • 人气:434
13、

函数在区间上最大值与最小值的和为           

  • 题型:2
  • 难度:容易
  • 人气:1167
14、

已知数列是等差数列,数列是等比数列,则的值为     .

  • 题型:2
  • 难度:较易
  • 人气:536
15、

函数 (x∈R)的图象为C,以下结论中:
①图象C关于直线对称;   ②图象C关于点对称;
③函数f(x)在区间内是增函数; 
④由的图象向右平移个单位长度可以得到图象C.
则正确的是         .(写出所有正确结论的编号)

  • 题型:2
  • 难度:较易
  • 人气:1715
16、

设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.

  • 题型:14
  • 难度:较易
  • 人气:1077
17、

设函数f (x) =.
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g (x)在区间上的值域.

  • 题型:14
  • 难度:中等
  • 人气:1991
18、

从集合中任取三个元素构成三元有序数组,规定 .
(1)从所有的三元有序数组中任选一个,求它的所有元素之和等于10的概率
(2)定义三元有序数组的“项标距离”为(其中),从所有的三元有序数组中任选一个,求它的“项标距离”d为偶数的概率.

  • 题型:14
  • 难度:中等
  • 人气:2004
19、

设数列为等差数列,且a3=5,a5=9;数列的前n项和为Sn,且Sn+bn="2."
(1)求数列的通项公式;
(2)若为数列的前n项和,求.  

  • 题型:14
  • 难度:中等
  • 人气:525
20、

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值; 
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;
(3)写出(-∞,+∞)内函数f(x)的单调区间.

  • 题型:14
  • 难度:中等
  • 人气:619
21、

已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.

  • 题型:14
  • 难度:困难
  • 人气:1409