如图,在阴极射线管正下方平行放置一根通有足够强直流电流的长直导线,且导线中电流方向水平向右,则阴极射线将会( )
A.向上偏转 | B.向下偏转 |
C.向纸内偏转 | D.向纸外偏转 |
如图所示为速度选择器装置,场强为E的匀强电场与磁感应强度为B的匀强磁场互相垂直.一带电量为+q,质量为m的粒子(不计重力)以速度v水平向右射入,粒子恰沿直线穿过,则下列说法正确的是( )
A.若带电粒子带电量为+2q,粒子将向下偏转 |
B.若带电粒子带电量为-2q,粒子仍能沿直线穿过 |
C.若带电粒子速度为2v,粒子不与极板相碰,则从右侧射出时电势能一定增大 |
D.若带电粒子从右侧水平射入,粒子仍能沿直线穿过 |
关于带电粒子在电场或磁场中运动的表述,以下正确的是( )
A.带电粒子在磁场中运动时受到的洛伦兹力方向与粒子的速度方向垂直 |
B.带电粒子在磁场中某点受到的洛伦兹力方向与该点的磁场方向相同 |
C.带电粒子在电场中某点受到的电场力方向与该点的电场强度方向相同 |
D.正电荷只在电场力作用下,一定从高电势处向低电势处运动 |
如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中。哪个图是正确的?
关于安培力、电场力和洛伦兹力,下列说法中正确的是( )
A.电荷在电场中一定受电场力作用,电荷在磁场中一定受洛伦兹力作用 |
B.电荷所受电场力可能与该处电场方向一致,电荷所受的洛伦兹力与磁场方向垂直 |
C.安培力和洛伦兹力的方向均可用左手定则判断 |
D.安培力和洛伦兹力本质上都是磁场对运动电荷的作用,安培力可以对通电导线做功,洛伦兹力对运动电荷也做功 |
如图所示,匀强磁场B 1 垂直水平光滑金属导轨平面向下,垂直导轨放置的导体棒ab在平行于导轨的外力F作用下做匀加速直线运动,通过两线圈感应出电压,使电压表示数U保持不变。已知变阻器最大阻值为R,且是定值电阻R 2 的三倍,平行金属板MN相距为d。在电场作用下,一个带正电粒子从O 1 由静止开始经O 2 小孔垂直AC边射入第二个匀强磁场区,该磁场的磁感应强度为B 2 ,方向垂直纸面向外,其下边界AD距O 1 O 2 连线的距离为h。已知场强B 2 =B,设带电粒子的电荷量为q、质量为m,则高度 ,请注意两线圈绕法,不计粒子重力。求:
(1)试判断拉力F能否为恒力以及F的方向(直接判断);
(2)调节变阻器R的滑动头位于最右端时,MN两板间电场强度多大?
(3)保持电压表示数U不变,调节R的滑动头,带电粒子进入磁场B 2 后都能击中AD边界,求粒子打在AD边界上的落点距A点的距离范围。
如下图所示,在空间有一直角坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的理想边界,OP上方区域Ⅰ中磁场的磁感应强度为B。一质量为m、电荷量为q的质子(不计重力,不计质子对磁场的影响)以速度v从O点沿与OP成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x轴上的Q点(图中未画出)。试求:
(1)区域Ⅱ中磁场的磁感应强度大小;
(2)Q点到O点的距离。
如图所示,虚线框abcd内为边长均为L的正方形匀强电场和匀强磁场区域,电场强度的大小为E,方向向下,磁感应强度为B,方向垂直纸面向外,PQ为其分界线,现有一群质量为m,电荷量为e的电子(重力不计)从PQ中点与PQ成30°角以不同的初速度射入磁场,求:
(1)能从PQ边离开磁场的电子在磁场运动的时间.
(2)若要电子在磁场运动时间最长,其初速v应满足的条件?
(3)若电子在满足(2)中的条件下且以最大速度进入磁场,最终从电场aP边界飞出虚线框所具有的动能EK。
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直,一质量为m,电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹y轴交与M点,已知,。不计重力,求:
(1)M点与坐标原点O间的距;
(2)粒子从P点运动到M点所用的时间。
如图所示,在区域足够大的空间中充满磁感应强度大小为B的匀强磁场,其方向垂直于纸面向里,在纸面内固定放置一绝缘材料制成的边长为L的等边三角形框架DEF,DE中点S处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE边向下如图(a)所示,发射粒子的电量为+q质量为m,但速度v有各种不同的数值。若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边,试求:
(1)带电粒子的速度v为多大时能够不与框架碰撞打到E点?
(2)为使S点发出的粒子最终又回到S点,且运动时间最短,v应为多大?最短时间为多少?
(3)若磁场是半径为a的圆柱形区域如图(b)所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O,且,要使S点发出的粒子最终又回到S点带电粒子速度v的大小应取哪些数值?
如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界一边长L的正三角形(边界上有磁场)ABC为三角形的三个顶点,今有一质量为m、电荷量为+q的粒子(不计重力),以速度,从AB边上的某点P既垂直于AB边又垂直于磁场的方向射入,然后从BC边上某点Q射出,若从P点射入的粒子能从Q点射出,则
A. | B. | C. | D. |
如图所示,匀强磁场的方向竖直向下,磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管,在水平拉力F的作用下,试管向右匀速运动,带电小球能从试管口处飞出,则( )
A.小球带负电 |
B.小球运动的轨迹是一条抛物线 |
C.洛伦兹力对小球做正功 |
D.维持试管匀速运动的拉力F应逐渐增大 |
如图所示,一束电子(电量为e)以速度V垂直射入磁感应强度为B、宽度为d的匀强磁场中,射出磁场时的速度方向与电子原来的入射方向的夹角为300。求:
(1)电子的质量m;
(2)电子在磁场中的运动时间t。
如图所示,在0≤x≤b、0≤y≤a的长方形区域中有一磁感应强度大小为B的匀强磁场,磁场的方向垂直于xOy平面向外。O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内的第一象限内。己知粒子在磁场中做圆周运动的周期为T,最先从磁场上边界中飞出的粒子经历的时间为,最后从磁场中飞出的粒子经历的时间为。不计粒子的重力及粒子间的相互作用,则:( )
A.粒子的射入磁场的速度大小 |
B.粒子圆周运动的半径 |
C.长方形区域的边长满足关系 |
D.长方形区域的边长满足关系 |
试题篮
()