如图所示,在y=0和y=2m之间有沿着x轴方向的匀强电场,MN为电场区域的上边界,在x轴方向范围足够大。电场强度的变化如图所示,取x轴正方向为电场正方向。现有一个带负电的粒子,粒子的比荷为,在t=0时刻以速度从O点沿y轴正方向进入电场区域,不计粒子重力。求:
(1)粒子通过电场区域的时间;
(2)粒子离开电场时的位置坐标;
(3)粒子通过电场区域后沿x方向的速度大小。
如图所示,MN是纸面内的一条直线,其所在空间充满与纸面平行的匀强电场或与纸面垂直的匀强磁场(场区都足够大),现有一个重力不计的带电粒子从MN上的O点以水平初速度v0射入场区,下列判断正确的是:
A.如果粒子回到MN上时速度增大,则该空间存在的场一定是电场。 |
B.如果粒子回到MN上时速度大小不变,则该空间存在的场可能是电场。 |
C.若只改变粒子的初速度大小,发现粒子再回到MN上时与其所成的锐角夹角不变,则该空间存在的场一定是磁场。 |
D.若只改变粒子的初速度大小,发现粒子再回到MN上所用的时间不变,则该空间存在的场一定是磁场。 |
如图所示,Q为固定的正点电荷,A、B两点位于Q的正上方和Q相距分别为h和0.25h,将另一点电荷从A点由静止释放,运动到B点时速度刚好又变为零。若此电荷在A点处的加速度大小为3g/4,则此电荷在B点处的加速度a 为( )
A.a=4g,方向竖直向上 B.a=4g,方向竖直向下
C.a=3g,方向竖直向上 D.a=3g,方向竖直向下
如图示,在水平匀强电场中O点处,用长为L的绝缘丝线悬挂一质量为的带电小球,静止平衡时丝线与竖直方向成45°角。现将小球拉至与O点处于同一高处的A点并由静止释放,不计空气阻力,求:
⑴小球运动的最大动能;
⑵小球运动到与A点关于O点对称点B时线的拉力大小。
一根长为l的丝线吊着一质量为m的带电量为q的小球静止在水平向右的匀强电场中,如图所示,丝线与竖直方向成37o角,重力加速度为g,求这个匀强电场的电场强度的大小。(已知 )
如图所示,金属板A、B与电源相连,电源电压U=2V,AB板间距d=5cm,B板接地。在两板间有a、b、c三点,其连线组成一直角三角形,ab连线与A板垂直, ab长L1=3cm,a点离A板L2=1cm。
问 ⑴ac间电势差为多少?
⑵一个电子在a点具有的电势能为多少?
⑶使一个电子从a点沿斜边移到c点时,电场力做功多少?
1如图所示,A、B两导体板平行放置,在t=0时将电子从A板附近由静止释放(电子的重力忽略不计)。分别在A、B两板间加四种电压,它们的UAB—t图线如下列四图所示。其中可能使电子到不了B板的是 (B)
如图所示,一质量为M=2kg的绝缘滑板静止于水平面上,它与水平面闻的动摩擦因数为=0.1,绝缘滑板上表面0点的左侧是光滑的,O点的右侧是粗糙的。有质量均为m="1" kg的小物块a、b分别静止地放于绝缘滑板的A点和O点,且A点与O点的间距L="0.5" m,小物块a、b均可视为质点,它们在O点右侧时与绝缘滑板间动摩擦因数均为弘- -整个装置所在空间存在着E=8×l03 N/C且方向水平向右的匀强电场,小物块a带有q=5×10-4C的正电荷,b和滑板均不带电。若小物块在运动过程中电荷量始终不变,a与b相碰后粘合在一起且碰撞时间极短,小物块恰好能到达绝缘滑板的右端;最大静摩擦力在大小上等于滑动摩擦力,g取10m/s2。求:
(1)小物块a到达O点时的速度。
(2)绝缘滑板的长度。
如图所示,光滑圆弧轨道与光滑斜面在B点平滑连接,圆弧半径R="0.2" m,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×l03V/m。一不带电的绝缘小球甲从光滑斜面上的A点由静止释放,在轨道最低点C处与静止的带正电小球乙发生正碰。若碰撞过程中无机械能损失,乙球恰好能通过圆弧轨道最高点D。已知甲、乙两球的质量均为m=l.0×10-2kg,乙球所带电荷量q=2.0×10-5 C,g取10 m/s2。(甲,乙两球可视为质点,整个运动过程无电荷转移)。求:
(1)发生碰撞前,小球乙在C点对轨道的压力。
(2)A点距离C点的竖直高度h。
如图所示,在粗糙绝缘水平面的A、B两处,分别固定着两个带相等电荷量的正点电荷,A、B相距4 L,O点是AB连线的中点,a、b是AB连线上的两点,且aO=bO=L。一质量为m,电荷量为q的带正电小滑块(可以看作质点)以初动能Eko从a点出发,沿直线向B点运动,小滑块第一次经过O点时动能为3Eko,第一次到达6点时动能恰好为零,小滑块最终停在O点。题中L、Eko、q和重力加速度g均为已知量,则下列说法正确的是 ( )
A.因两点电荷的电荷量、静电力常量题中均未知,故无法计算出小滑块运动的总路程
B.因两点电荷的电荷量、静电力常量题中均未知,故无法计算出电场中b、O两点的电势差
C.从题中数据可以确定小滑块与水平面间的动摩擦因数
D.小滑块第一次从a到O的过程中,电场力对它做的功等于小滑块增加的机械能
空间有一沿x轴对称分布的电场,其电场强度E随X变化的图像如图所示。下列说法正确的是( )
A.O点的电势最低 |
B.X2点的电势最高 |
C.X1和- X1两点的电势相等 |
D.该电场是等量负电荷从两电荷连线的中点沿中垂线向两侧外移形成的 |
光滑水平面上放有如图所示的用绝缘材料制成的“”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与物体都静止,试求:
(1)从小物体释放到第一次与滑板A壁碰撞所需时间t及碰撞前小物体速度v1的大小
(2)若小物体第一次与A壁碰后反弹(碰撞过程时间极短),且速度的大小为碰前的(相对水平面),则碰撞后滑板的速度v多大?
(3)物体从静止开始运动到第二次碰撞前,电场力做功为多大?(碰撞时间可忽略)
如图12所示,长L=1.6m,质量M=3kg的木板静放在光滑水平面上,质量m=1kg、
带电量q=+2.5×10-4C的小滑块放在木板的右端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向竖直向下强度为E=4.0×104N/C的匀强电场,如图所示,现对木板施加一水平向右的拉力F.取g=10m/s2,求:
(1)使物块不掉下去的最大拉力F;
(2)如果拉力F=11N恒定不变,小物块所能获得的最大动能.
如图所示,在E=103V/m的竖直匀强电场中,有一光滑的半圆形绝缘轨道QPN与一水平绝缘轨道MN连接,半圆形轨道平面与电场线平行,P为QN圆弧的中点,其半径R=0.4m,一带正电q=10-4C的小滑块质量m=0.01kg,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5m处,要使小滑块恰能运动到圆轨道的最高点Q,则滑块应以多大的初速度v0向左运动?取g=10m/s2,
如图所示,光滑的水平桌面放在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的试管,试管底部有一带电小球.在水平拉力F作用下,试管向右匀速运动,带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是
A.小球带正电 |
B.小球运动的轨迹是抛物线 |
C.洛伦兹力对小球做正功 |
D.维持试管匀速运动的拉力F应逐渐增大 |
试题篮
()