在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
如图所示,相距为R的两块平行金属板M、N正对着放置,S1、S2分别为M、N板上的小孔,S1、S2、O三点共线,它们的连线垂直M、N,且S2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子经S1进入M、N间的电场后,通过S2进入磁场.粒子在S1处的速度以及粒子所受的重力均不计.
(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小v;
(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;
(3)当M、N间的电压不同时,粒子从S1到打在D上经历的时间t会不同,求t的最小值.
如图所示,质量为m、电荷量为q的带电粒子,沿与水平面成θ=60°的方向匀速运动,进入垂直纸面向里的圆形匀强磁场区域后,从水平金属板M左端下边缘附近水平射出磁场,进入两平行金属板M、N间,恰好从N板右边缘飞出.已知匀强磁场的磁感应强度为B,方向垂直于纸面向里,两带电极板M、N长为l,间距为d,板间电压为U,不计粒子重力.
(1)分析判断极板M带正电还是带负电?
(2)求粒子在磁场中运动的速度大小;
(3)求粒子进入磁场时的入射点与离开磁场时的出射点之间的距离。
如图所示,两个横截面分别为圆形和正方形的区域内有磁感应强度相同的匀强磁场,圆的直径和正方形的边长相等,两个电子分别以相同的速度分别飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场的电子初速度方向对准圆心;进入正方形磁场的电子初速度方向垂直于边界,从中点进入.则下面判断正确的是( )
A.两电子在两磁场中运动时,其半径一定相同 |
B.两电子在磁场中运动的时间有可能相同 |
C.进入圆形磁场区域的电子可能先飞离磁场 |
D.进入圆形磁场区域的电子可能后飞离磁场 |
真空中有如图1装置,水平放置的金属板A、B中间开有小孔,小孔的连线沿竖直放置的金属板C、D的中间线,一质量为m、电荷量为q的带正电粒子(初速不计、重力不计) P进入A、B间被加速后,再进入金属板C、D间的偏转电场偏转,并恰能从D板下边缘射出。已知金属板A、B间电势差为UAB =" +" U0, C、D板长度均为L,间距为。在金属板C、D下方有如图1所示的、有上边界的、范围足够大的匀强磁场,该磁场上边界与金属板C、D下端重合,其磁感应强度随时间变化的图象如图2,图2中的B0为已知,但其变化周期T0未知,忽略偏转电场的边界效应。
(1)求金属板C、D间的电势差UCD;
(2)求粒子刚进入磁场时的速度;
(3)已知垂直纸面向里的磁场方向为正方向,该粒子在图2中时刻进入磁场,并在时刻的速度方向恰好水平,求该粒子从射入磁场到离开磁场的总时间t总。
如图所示,在平面内水平和竖直的虚线L1、L2将平面分为四个区域,L2的左侧有一随时间变化的匀强电场,电场的变化情况如图所示(图象中场强大小E0为已知量,其他量均为未知),电场强度方向与L1平行且水平向右。L2的右侧为匀强磁场,方向垂直纸面向外。现将一绝缘挡板放在第一个区域内,其与L1、L2的交点M、N到O点的距离均为2b。在图中距L1为b、L2为4b的A点有一粒子源,可以发射质量为m,电荷量为+q的粒子(粒子的初速度近似为零,不计重力),粒子与挡板碰后电荷量不变,速度大小不变,方向变为平行于L2,当粒子第一次到达理想边界L2时电场消失,粒子再次与挡板碰撞的同时匀强电场恢复且粒子源发射下一个粒子,如此重复。
(1)求粒子第一次到达边界L2时的速度大小及速度方向与虚线L1的夹角;
(2)若粒子源在t=0时刻发射一粒子,粒子进入右面磁感应强度为B0的匀强磁场中,恰好打在挡板M处。求坐标轴中的T1、T2的值分别是多少?
如图所示的圆形区域里,匀强磁场的方向是垂直于纸面向内,有一束速率各不相同的质子自A点沿半径方向射入磁场,不计质子的重力,这些质子在磁场中:
A.运动时间越长,其轨迹对应的圆心角越大 |
B.运动时间越长,其轨迹越长 |
C.运动时间越短,射出磁场区域时速度越小 |
D.运动时间越短,射出磁场区域时速度的偏向角越大 |
如图所示,在光滑的水平桌面内有一直角坐标系xOy,在y轴正半轴与边界直线MN间有一垂直于纸面向外磁感应强度为B的匀强磁场,直线MN平行于y轴,N点在x轴上,在磁场中放置一固定在短绝缘板,其上表面所在的直线过原点O且与x轴正方向成α=30°角,在y轴上的S点左侧正前方处,有一左端固定的绝缘轻质弹簧,弹簧的右端与一个质量为m,带电量为q的带电小球接触(但不栓接),弹簧处于压缩锁定状态,在某时刻解除锁定,带电小球将垂直于y轴从S点射入磁场,垂直打在绝缘板上,并以原速率反向弹回,然后经过直线MN上的P点并垂直于MN向右离开磁场,在x轴上有一点Q,已知NP=4L,NQ=3L,则:
(1)小球带何种电荷?小球从S进入磁场后经多长时间打在绝缘板上?
(2)弹簧解除锁定前的弹性势能是多少?
(3)如果在直线MN的右侧加一方向与桌面平行的匀强电场,小球在电场力的作用下最后在Q点垂直击中x轴,那么,该匀强电场的电场强度是多少?方向如何?
如图所示,电子自静止开始经M、N板间的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,两板间的电压为U,电子离开磁场时的位置P偏离入射方向的距离为L,在距离磁场边界S处有屏幕N, 电子射出磁场后打在屏上。(已知电子的质量为m,电荷量为e)求:
(1)电子进入磁场的速度大小
(2)匀强磁场的磁感应强度
(3)电子打到屏幕上的点距中心O点的距离是多少?
如图甲所示,在一水平放置的隔板MN的上方,存在一磁感应强度大小为B的匀强磁场,磁场方向如图所示。O为隔板上的一个小孔,通过O点可以从不同方向向磁场区域发射电量为+q,质量为m,速率为的粒子,且所有入射的粒子都在垂直于磁场的同一平面内运动。不计重力及粒子间的相互作用。
(1)如图乙所示,与隔板成450角的粒子,经过多少时间后再次打到隔板上?此粒子打到隔板的位置与小孔的距离为多少?请画出轨迹图,并求解。
(2)所有从O点射入的带电粒子在磁场中可能经过区域的面积为多少?请画出图示,并求解。
电子质量为m、电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1) OP的长度;
(2)电子从由O点射入到落在P点所需的时间t.
如图所示,Ⅰ、Ⅱ、Ⅲ为电场和磁场的理想边界,一束电子(电量为e,质量为m,重力不计)由静止状态从P点经过Ⅰ、Ⅱ间的电场加速后垂直到达边界Ⅱ的Q点。匀强磁场的磁感应强度为B,磁场边界宽度为d,电子从磁场边界Ⅲ穿出时的速度方向与电子原来的入射方向夹角为30°。求:
(1)电子在磁场中运动的时间t;
(2)若改变PQ间的电势差,使电子刚好不能从边界Ⅲ射出,则此时PQ间的电势差U是多少?
如图所示,宽h=2cm的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现有一群正粒子从O点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm,则( )
A.右边界:-4cm<y<4cm有粒子射出 |
B.右边界:y>4cm和y<-4cm有粒子射出 |
C.左边界:y>8cm有粒子射出 |
D.左边界:0<y<8cm有粒子射出 |
如图,从阴极K发射的热电子,重力和初速均不计,通过加速电场后,沿图示虚线垂直射入匀强磁场区,磁场区域足够长,宽度为L=2.5cm。已知加速电压为U=182V,磁感应强度B=9.1×10-4T,电子的电量,电子质量。求:
(1)电子在磁场中的运动半径R
(2)电子在磁场中运动的时间t(结果保留)
(3)若加速电压大小可以改变,其他条件不变,为使电子在磁场中的运动时间最长,加速电压U应满足什么条件?
试题篮
()