一组样本数据,容量为150。按从小到大的组序分成10个组,其频数如下表:
组号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
频数 |
15 |
17 |
14 |
18 |
x |
13 |
19 |
16 |
12 |
11 |
那么,第5组的频率为
A.0.1 | B.10 | C.0.15 | D.15 |
一个总体分为两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知层中甲、乙都被抽到的概率为,则总体中的个体数为.
为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[55,75)的人数是 .
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为"连续10天,每天新增疑似病例不超过7人".根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()
A. | 甲地:总体均值为3,中位数为4 | B. | 乙地:总体均值为1,总体方差大于0 |
C. | 丙地:中位数为2,众数为3 | D. | 丁地:总体均值为2,总体方差为3 |
(本小题满分14分)
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频数条形图;
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?
潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分
布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。
(1)求居民月收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中用
分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?
某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关.若T≤1,则销售利润为0元;若1<T≤3,则销售利润为100元;若T>3,则销售利润为200元.设每台该种电器的无故障使用时间T≤1,1<T≤3及T>3这三种情况发生的概率分别为p1,p2,p3,又知p1,p2是方程的两个根,且p2=p3.
(1)求p1,p2,p3的值;
(2)记表示销售两台这种家用电器的销售利润总和,求的期望.
(本小题满分12分)甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:
若将频率视为概率,回答下列问题.(Ⅰ)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率; (Ⅱ)若甲、乙两运动员各自射击1次,ξ表示这2次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为
和
,且各株大树是否成活互不影响.求移栽的4株大树中:
(Ⅰ)两种大树各成活1株的概率;
(Ⅱ)成活的株数
的分布列与期望.
某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )
A. | 90 | B. | 75 | C. | 60 | D. | 45 |
一个容量100的样本,其数据的分组与各组的频数如下表
则样本数据落在 上的频率为( )
A. | 0.13 | B. | 0.39 | C. | 0.52 | D. | 0.64 |
从一堆苹果中任取5只,称得它们的质量如下(单位:克)125  124  121  123  127,则该样本标准差 (克)(用数字作答)
试题篮
()