优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 柯西不等式 / 选择题
高中数学

二维形式的柯西不等式可用( )表示.

A.a2+b2≥2ab(a,b∈R)
B.(a2+b2)(c2+d2)≥(ab+cd)2(a,b,c,d∈R)
C.(a2+b2)(c2+d2)≥(ac+bd)2(a,b,c,d∈R)
D.(a2+b2)(c2+d2)≤(ac+bd)2(a,b,c,d∈R)
来源:
  • 题型:未知
  • 难度:未知

已知a,b∈R,a2+b2=4,求3a+2b的取值范围为( )

A.3a+2b≤4 B.3a+2b≤ C.3a+2b≥4 D.不确定
来源:
  • 题型:未知
  • 难度:未知

设x、y、z是正数,且x2+4y2+9z2=4,2x+4y+3z=6,则x+y+z等于( )

A. B. C. D.
来源:
  • 题型:未知
  • 难度:未知

已知x,y,z均为正数,且x+y+z=2,则++的最大值是( )

A.2 B.2 C.2 D.3
来源:
  • 题型:未知
  • 难度:未知

实数ai(i=1,2,3,4,5,6)满足(a2﹣a12+(a3﹣a22+(a4﹣a32+(a5﹣a42+(a6﹣a52=1则(a5+a6)﹣(a1+a4)的最大值为( )

A.3 B.2 C. D.1
来源:
  • 题型:未知
  • 难度:未知

abcxyz均为正数,且a2b2c2=10,x2y2z2=40,axbycz=20,则等于(  ).

A. B. C. D.
  • 题型:未知
  • 难度:未知

高中数学柯西不等式选择题