已知实数 ,设函数
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
, 则称 是数列 的一个 " 时刻" 记 是数列 的所有 " 时刻" 组成的集合.
(1)对数列 A: , 写出 的所有元素;
(2)证明:若数列 中存在 使得 , 则 ;
(3)证明:若数列 满足 则G(A)的元素个数小于 ;
设a,b,c R,a+b+c=0,abc=1.
(1)证明:ab+bc+ca<0;
(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥ .
设函数 ,曲线 在点( ,f( ))处的切线与y轴垂直.
(1)求b.
(2)若 有一个绝对值不大于1的零点,证明: 所有零点的绝对值都不大于1.
已知函数 .
(1)当 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
(2)若f(x)≥1,求a的取值范围.
已知椭圆C: 的离心率为 ,且过点A(2,1).
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
已知函数f(x)=sin2xsin2x.
(1)讨论f(x)在区间(0,π)的单调性;
(2)证明: ;
(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤ .
试题篮
()