如图所示,质量为m=0.2kg的小球(可视为质点)从水平桌面右端点A以初速度v0水平抛出,桌面右侧有一竖直放置的光滑轨道MNP,其为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径.P点到桌面的竖直距离为R.小球飞离桌面后恰由P点无碰撞地落入圆轨道,取g=10 m/s2.
(1)求小球在A点的初速度v0及AP间的水平距离x;
(2)求小球到达圆轨道最低点N时对N点的压力;
(3)判断小球能否到达圆轨道最高点M.
如图是利用传送带装运煤块的示意图.其中传送带足够长,倾角θ=37°,煤块与传送 带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度H=1.8 m,与运煤车车厢中心的水平距离x=1.2 m.现在传送带底端由静止释放一些煤块(可视为质点),煤块在传送带的作用下先做匀加速直线运动,后与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.要使煤块在轮的最高点水平抛出并落在车厢中心,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:
(1)传送带匀速运动的速度v及主动轮和从动轮的半径R;
(2)煤块在传送带上由静止开始加速至与传送带速度相同所经过的时间t.
如图所示,在粗糙水平台阶上A点静止放置一质量m=0.5 kg的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5 m.在台阶右侧固定了一个以O点为圆心的圆弧形挡板,以O点为原点建立平面直角坐标系,挡板上边缘P点的坐标为(1.6 m,0.8 m).现用F=5 N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板(g=10 m/s2).
(1)若小物块恰能击中挡板的上边缘P点,求拉力F作用的距离;
(2)改变拉力F的作用时间,小物块可击中挡板的不同位置,求击中挡板时小物块动能的最小值.(结果可保留根式)
如图所示,倾角为θ的斜面处于竖直向下的匀强电场中,在斜面上某点以初速度为v0水平抛出一个质量为m的带正电小球,小球在电场中受到的电场力与小球所受的重力相等。设斜面足够长,地球表面重力加速度为g,不计空气的阻力,求:
(1)小球落到斜面所需时间t;
(2)小球从水平抛出至落到斜面的过程中电势能的变化量ΔE。
如图所示,小球从A点以固定的初速度v0水平抛出,空气阻力不计,A点右下方有一带挡板的轮子,轮子与小球运动轨迹在同一竖直面内。轮子的半径为R,抛出点A比轮轴高h,挡板的初位置在与轮轴等高的B点,调整轮轴O的位置,使平抛轨迹与轮缘相切于C,OC与OB间夹角为θ角。求:
(l)小球抛出的初速度v0大小为多少;
(2)小球抛出的瞬间轮子开始顺时针匀速转动,若不计挡板大小,要使小球打在挡板上,轮子转动的角速度为多少?
(8分)如图所示,质量为m的小球从A点水平抛出,抛出点距离地面高度为H,不计空气的粘滞阻力对小球运动的影响,重力加速度为g。在无风情况下小球的落地点B到抛出点的水平距离为L;当有恒定的水平风力F时,小球仍以原初速度抛出,落地点C到抛出点的水平距离为3L/4,求:
(1)小球初速度的大小;
(2)水平风力F的大小;
如图所示,已知倾角为θ=45°、高为h的斜面固定在水平地面上.一小球从高为H(h<H<)处自由下落,与斜面做无能量损失的碰撞后水平抛出.小球自由下落的落点距斜面左侧的水平距离x满足一定条件时,小球能直接落到水平地面上.
(1)求小球落到地面上的速度大小;
(2)求要使小球做平抛运动后能直接落到水平地面上,x应满足的条件;
(3)在满足(2)的条件下,求小球运动的最长时间.
如图所示,半径R=0.2m的光滑四分之一圆轨道MN竖直固定放置,末端N与一长L=0.8m的水平传送带相切,水平衔接部分摩擦不计,传动轮(轮半径很小)作顺时针转动,带动传送带以恒定的速度ν0运动.传送带离地面的高度h=1.25m,其右侧地面上有一直径D=0.5m的圆形洞,洞口最左端的A点离传送带右端的水平距离S=1m,B点在洞口的最右端.现使质量为m=0.5kg的小物块从M点由静止开始释放,经过传送带后做平抛运动,最终落入洞中,传送带与小物块之间的动摩擦因数μ=0.5. g取10m/s2.求:
(1)小物块到达圆轨道末端N时对轨道的压力
(2)若ν0=3m/s,求物块在传送带上运动的时间
(3)若要使小物块能落入洞中,求ν0应满足的条件.
半径R = 40cm竖直放置的光滑圆轨道与水平直轨道相连接如图所示。质量m = 50g的小球A以一定的初速度由直轨道向左运动,并沿圆轨道的内壁冲上去。如果小球A经过N点时的速度v1= 6m/s,小球A经过轨道最高点M后作平抛运动,平抛的水平距离为1.6m,(g=10m/s2)。求:
(1)小球经过最高点M时速度多大;
(2)小球经过最高点M时对轨道的压力多大;
(3)小球从N点滑到轨道最高点M的过程中克服摩擦力做的功是多少。
如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度υ飞离桌面,最终落在水平地面上.已知l=1.4m,υ="3.0" m/s,m=0.10kg,物块与桌面间的动摩擦因数μ=0.25,桌面高h=0.45m,不计空气阻力,重力加速度g取10m/s2。
求:(1)小物块落地点距飞出点的水平距离s;
(2)小物块落地时的动能Ek;
(3)小物块的初速度大小υ0.
如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方放存在匀强磁场和匀强电场,磁场的磁感应强度为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴正方向夹角为θ,不计空气阻力,重力加速度为g,求:
(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h。
如图所示,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0 m,B点离地高度H=1.0 m,A、B两点的高度差h=0.5 m,重力加速度g取10 m/s2,不计空气影响,求:
(1)地面上DC两点间的距离s;
(2)轻绳所受的最大拉力大小。
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动,当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示,已知握绳的手离地面高度为d,手与球之间的绳长为,重力加速度为g,忽略手的运动半径和空气阻力。
①求绳断时球的速度大小和球落地时的速度大小
②问绳能承受的最大拉力多大?
③改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?
如图所示是利用电力传送带装运麻袋包的示意图.传送带长l=20 m,倾角θ=37°,麻袋包与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径R相等,传送带不打滑,主动轮顶端与货车底板间的高度差为h=1.8 m,传送带匀速运动的速度为v=2 m/s.现在传送带底端(传送带与从动轮相切位置)由静止释放一只麻袋包(可视为质点),其质量为100 kg,麻袋包最终与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.如果麻袋包到达主动轮的最高点时,恰好水平抛出并落在车厢底板中心,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:
(1)主动轮的半径R;
(2)主动轮轴与货车车厢底板中心的水平距离x
(3)麻袋包在传送带上运动的时间t;
试题篮
()