质量为m的飞机,以速率v在水平面上做半径为r的匀速圆周运动,空气对飞机的作用力的大小等于( )
A. | B. | C. | D. |
如图所示,摩擦轮A和B通过中介轮C进行传动,A为主动轮,A的半径为20cm,B的半径为10cm,则A、B两轮边缘上的点( )
A.角速度之比为1∶2
B.向心加速度之比为1∶2
C.线速度之比为1∶2
D.线速度之比为1∶1
“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为,车和人的总质量为,做圆周运动的半径为,若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )
A.桶面对车的弹力为 |
B.桶面对车的弹力为 |
C.人和车的速度为 |
D.人和车的速度为 |
如图所示,A、B是两个摩擦传动轮(不打滑),两轮半径大小关系为RA=2RB,则两轮边缘上的( )
A.角速度之比ωA:ωB=2:1
B.周期之比TA:TB=2:1
C.转速之比nA:nB=2:1
D.向心加速度之比aA:aB=2:1
如图所示,倒置的光滑圆锥面内侧有两个完全相同的玻璃小球A、B沿锥面在水平面做匀速圆周运动,则下列关系式正确的是( )
A.它们的线速度vA<vB
B.它们的角速度ωA=ωB
C.它们的向心加速度aA=aB
D.它们的向心力FA=FB
以下说法正确的是 ( )
A.匀速圆周运动就是速度不变的圆周运动 |
B.子弹能射入木块是因为子弹对木块的作用力大于木块对子弹的作用力 |
C.做曲线运动的物体,所受合外力的方向一定与速度方向不在一条直线上 |
D.根据亚里士多德的观点,两物体从同一高度由静止下落,重的物体和轻的物体下落快慢相同 |
用长为l的细线一端栓一小球,另一端绕固定悬点O在水平面内做匀速圆周运动形成“圆锥摆”。现有三个摆绕同一悬点在同一水平面内运动,三个摆球质量相等,如图所示,则:( )
A.三球运动的线速度相等 |
B.三球运动的角速度相等 |
C.三球运动的加速度相等 |
D.三个摆线拉力大小相等 |
半径R=4cm的圆盘可绕圆心O水平转动,其边缘有一质量m=1kg的小物块(可视为质点),若物块随圆盘一起从静止开始加速转动,其向心加速度与时间满足a0=t2,物块与圆盘间的动摩擦因数为0.6,则:
A.2s末圆盘的线速度大小为0.4m/s |
B.2s末物块所受摩擦力大小为4N |
C.物块绕完第一圈的时间约为1.88s |
D.物块随圆盘一起运动的最大速度约为0.5m/s |
质量为m的小球由轻绳a、b分别系于一轻质木架上的A和C点,绳长分别为la、lb,如图所示。当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时轻杆停止转动,则
A.小球仍在水平面内做匀速圆周运动 |
B.在绳b被烧断瞬间,a绳中张力突然增大 |
C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动 |
D.绳b未被烧断时,绳a的拉力大于mg,绳b的拉力为mω2lb |
如图所示,两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点,并在空中同一水平面内做匀速圆周运动,则a、b两小球具有相同的( )
A.角速度的大小 |
B.线速度的大小 |
C.向心力的大小 |
D.向心加速度的大小 |
如图所示,竖直圆盘绕中心O沿顺时针方向匀速转动,当圆盘边缘上的P点转到与O同一高度时,一小球从O点以初速度v0水平向P抛出,当P点第一次转到位置Q时,小球也恰好到达位置Q,此时小球的动能是抛出时动能的10倍.已知重力加速度为g,不计空气阻力.根据以上数据,可求得的物理量有
A.小球从抛出到与P相遇的时间 |
B.小球刚抛出时的动能 |
C.圆盘的半径 |
D.圆盘转动的角速度 |
我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速圆周运动,运行的周期为T,若以R表示月球的半径,则
A.卫星运行时的线速度为 |
B.卫星运行时的向心加速度为 |
C.月球的第一宇宙速度为 |
D.物体在月球表面自由下落的加速度为 |
下列说法正确的有( )
A.匀速圆周运动是匀速运动 |
B.瞬时速度的大小叫做瞬时速率;平均速度的大小叫做平均速率 |
C.速度变化越快的物体惯性越大,匀速或静止时没有惯性 |
D.有些材料在温度降低到一定值时其电阻会突然变为零 |
一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相同的小球A和B 沿着筒的内壁在水平面内做匀速圆周运动,如图所示,A的运动半径较大,则( )
A.A球的角速度必小于B球的角速度 |
B.A球的线速度必大于B球的线速度 |
C.A球的运动周期必大于B球的运动周期 |
D.A球对筒壁的压力必大于B球对筒壁的压力 |
试题篮
()