如图所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块.求:
(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
(2)当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度.
如图所示,小球Q在竖直平面内做匀速圆周运动,半径为r,当球Q运动到与O在同一水平线上时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点处相碰,Q球的角速度ω应满足什么条件?
(18分)如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为、带电量为e的电子,电子重力忽略不计。在三角形ABO内有垂直纸面向里的匀强磁场,当电子从顶点A沿AB方向射入磁场时,电子恰好从O点射出。试求:
(1)从顶点A沿AB方向射入的电子在磁场中的运动时间t;
(2)速度大小为的电子从顶点A沿AB方向射入磁场(其它条件不变),求从磁场射出的位置坐标。
(3)磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO内的左侧,要使放射出的速度大小为电子穿过磁场后都垂直穿过y轴后向右运动,试求匀强磁场区域分布的最小面积S。(用阴影表示最小面积)
宇航员在一行星上以10m/s的速度竖直上抛一质量为0.2kg的物体,不计阻力,经2.5s后落回手中,已知该星球半径为7220km。
(1)该星球表面的重力加速度多大?
(2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
(3)若物体距离星球无穷远处时其引力势能为零,则当物体距离星球球心r时其引力势能(式中m为物体的质量,M为星球的质量,G为万有引力常量)。问要使物体沿竖直方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
(13分)如图所示,在同一竖直平面内有A、B两物体,A物体从a点起以角速度ω沿顺时针方向做半径为R的匀速圆周运动,同时B物体从圆心O处自由下落.若要A、B两物体在d点相遇,求角速度ω须满足的条件.
如图所示,空间存在一方向竖直向下的匀强电场。长L="0.5" m的绝缘细线一端固定于电场中的O点,另一端系一带电荷量q=+4×10-5C、质量m="0.1" kg的小球在竖直平面内做圆周运动。已知当小球以速率v="4" m/s通过最高点A时,绝缘细线中的张力为2 N,(取g=10m/s2)
求
匀强电场的场强大小
小球过最低点时的速率
如图所示,长度为L的细绳上端固定在天花板上O点,下端拴着质量为m的小球。当把细绳拉直时,细绳与竖直线的夹角为θ=60°,此时小球静止于光滑的水平面上。
(1) 当球以角速度做圆锥摆运动时,细绳的张力T为多大?水平面受到的压力FN是多大?
(2) 当球以角速度做圆锥摆运动时,细绳的张力T′及水平面受到的压力FN′各是多大?
(本题8分).如图所示,为一传送装置,其中AB段粗糙,AB段长为L=0.2 m,动摩擦因数μ=0.6,BC、DEN段均可视为光滑,且BC的始、末端均水平,具有h=0.1 m的高度差,DEN是半径为r=0.4 m的半圆形轨道,其直径DN沿竖直方向,C位于DN竖直线上,CD间的距离恰能让小球自由通过.在左端竖直墙上固定一轻质弹簧,现有一可视为质点的小球,小球质量m=0.2 kg,压缩轻质弹簧至A点后由静止释放(小球和弹簧不粘连),小球刚好能沿DEN轨道滑下.求:
(1)小球到达N点时的速度;
(2)压缩的弹簧所具有的弹性势能。
(8分)如图所示,在倾角为θ的光滑斜面上,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,求:
(1)小球通过最高点A时的速度vA.
(2)小球通过最低点B时,细线对小球的拉力.
利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集。整个装置内部为真空。已知被加速的两种正离子的质量分别是和,电荷量均为.加速电场的电势差为,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用。
(1)求质量为的离子进入磁场时的速率;
(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距.
如图所示,置于圆形水平转台上的小物块随转台转动。若转台以某一角速度转动时,物块恰好与平台发生相对滑动。现测得小物块与转轴间的距离l=0.50m,小物块与转台间的动摩擦因数μ=0.20,设物块所受的最大静摩擦力等于滑动摩擦力,g取10m/s2。
(1)画出小物块随转台匀速转动过程中的受力示意图,并指出提供向心力的力;
(2)求此时小物块的角速度。
在光滑水平桌面中央固定一边长为0.3m的小正三棱柱abc俯视如图所示。长度为L=1m的细线,一端固定在a点,另一端拴住一个质量为m=1kg、不计大小的小球。初始时刻,把细线拉直在ca的延长线上,并给小球以v0=1m/s且垂直于细线方向的水平速度,由于棱柱的存在,细线逐渐缠绕在棱柱上。已知细线所能承受的最大张力为8N,求:
(1)小球从开始运动至绳断时的位移。
(2)绳断裂前小球运动的总时间。
如图所示,两平行金属板A、B板长L=8cm,两板间距离d=8cm,A板比B板电势高300V,一带正电的粒子电量C,质量kg,沿两板中线垂直电场线飞入电场,初速度 m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入PS的右侧,已知两界面MN、PS相距为cm.在界面PS右侧与A板在同一水平线上放置荧光屏bc.(粒子所受重力不计)
(1)求粒子飞出平行金属板时速度的大小和方向;
(2)求出粒子经过界面PS时离P点的距离h为多少;
(3)若PS右侧与A板在同一水平线上距离界面PS为cm的O点固定一点电荷C,(图中未画出,设界面PS右边点电荷的电场分布不受界面等影响,界面PS左边不存在点电荷的电场),试求粒子穿过界面PS后打在荧光屏bc的位置离O点的距离为多少?(静电力常数, )
如图所示,有一长为R的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直平面内做完整的圆周运动,求:
小球通过最高点A时的速度vA;
小球通过最低点B时,细线对小球的拉力;
小球运动到A点或B点时细线断裂,小球落到水平地面时到C点的距离若相等,则OC间距离L等于多少?
如图21所示,一根长0.1m的细线,一端系着一个质量为0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上作匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线的拉力比开始时大40N,求:
(1)线断开前的瞬间,线的拉力大小。
(2)线断开的瞬间,小球运动的线速度。
(3)如果小球离开桌面时,速度方向与桌边的夹角为,桌面高出地面0.8m,求小球飞出后的落地点距桌边的水平距离。
试题篮
()