我国自主研制的北斗卫星导航系统包括5颗静止轨道卫星(同步卫星)和30颗非静止轨道卫星,将为全球用户提供高精度、高可靠性的定位、导航服务。
A为地球同步卫星,质量为m1;B为绕地球做圆周运动的非静止轨道卫星,质量为m2,离地面高度为h.已知地球半径为R,地球自转周期为T0,地球表面的重力加速度为g。 求:
(1)卫星A运行的角速度;(2)卫星B运行的线速度。
两颗卫星在同一轨道平面内绕地球做绕向相同的匀速圆周运动,设地球平均半径为R,a卫星离地面高为R,b卫星离地面高为3R,若某时该两卫星正好同时通过地面同一点正上方,试求从两卫星位于地面同一点正上方开始,两卫星第一次出现最远距离的时间是a卫星周期的几倍?
2008年9月25日21点10分,我国继“神州”五号、六号载人飞船后又成功地发射了“神州”七号载人飞船。飞船绕地飞行五圈后成功变轨到距离地面一定高度的近似圆形轨道。航天员翟志刚于27日16点35分开启舱门,开始进行令人振奋的太空舱外活动,若地球表面的重力加速度为g,地球半径为R,飞船运行的圆轨道距地面的高度为h,不计地球自转的影响,求
(1)飞船绕地球运行加速度的大小;(2)飞船绕地球运行的周期。
已知地球半径为R,引力常量为G,地球表面的重力加速度为g。不考虑地球自转的影响。
⑴ 推导第一宇宙速度v的表达式 ;
⑵若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,飞行n圈,所用时间为t.,求地球的平均密度
两颗卫星在同一轨道平面绕地球做匀速圆周运动,地球半径为R,a卫星离地面的高度等于R,a卫星离地面高度为3R,则
(1)a、b两卫星周期之比Ta∶Tb是多少?
(2)若某时刻两卫星正好同时通过地面同一点的正上方,则a至少经过多少个周期两卫星相距最远?
2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h的圆形轨道.已知地球半径为R,地面处的重力加速度为g,引力常量为G,求:
⑴地球的质量; ⑵飞船在上述圆形轨道上运行的周期T.
2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注。我国发射的“嫦娥三号”探月卫星在环月圆轨道绕行n圈所用时间为t,如图所示。已知月球半径为R,月球表面处重力加速度为g月,引力常量为G.试求:
(1)月球的质量M;
(2)月球的第一宇宙速度v1;
(3)“嫦娥三号”卫星离月球表面高度h.
(1)开普勒从1609年~1619年发表了著名的开普勒行星运动三定律,其中第一定律为:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等.实践证明,开普勒三定律也适用于其他中心天体的卫星运动。
(2)从地球表面向火星发射火星探测器.设地球和火星都在同一平面上绕太阳做圆周运动,火星轨道半径Rm为地球轨道半径R0的1.5倍,简单而又比较节省能量的发射过程可分为两步进行:第一步,在地球表面用火箭对探测器进行加速,使之获得足够动能,从而脱离地球引力作用成为一个沿地球轨道运动的人造行星。第二步是在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探测器沿原方向加速,使其速度数值增加到适当值,从而使得探测器沿着一个与地球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上.当探测器脱离地球并沿地球公转轨道稳定运行后,在某年3月1日零时测得探测器与火星之间的角距离为60°,如图所示,问应在何年何月何日点燃探测器上的火箭发动机方能使探测器恰好落在火星表面?(时间计算仅需精确到日),已知地球半径为:;;
“神舟”六号载人飞船在空中环绕地球做匀速圆周运动,某次经过赤道的正上空时,对应的经度为θ1(实际为西经157.5°),飞船绕地球转一圈后,又经过赤道的正上空,此时对应的经度为θ2(实际为180°).已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T0.求飞船运行的圆周轨道离地面高度h的表达式.(用θ1、θ2、T0、g和R表示)
2013年6月,我国成功实现目标飞行器“神舟十号”与轨道空间站“天宫一号”的对接.如图所示,已知“神舟十号”从捕获“天宫一号”到实现对接用时t,这段时间内组合体绕地球转过的角度为θ(此过程轨道不变,速度大小不变),地球半径为R,地球表面重力加速度为g,万有引力恒量G,不考虑地球自转;求:(1)地球质量M;(2)组合体运动的周期T;(3)组合体所在圆轨道离地高度H。
我国在2007年成功发射一颗绕月球飞行的卫星,计划在2012年前后发射一颗月球软着陆器,在2017年前后发射一颗返回式月球软着陆器,进行首次月球样品自动取样并安全返回地球.设想着陆器完成了对月球表面的考察任务后,由月球表面回到围绕月球做圆周运动的轨道舱,其过程如图3-4-7所示.设轨道舱的质量为m,月球表面的重力加速度为g,月球的半径为R,轨道舱到月球中心的距离为r,引力常量为G,则试求:
(1)月球的质量;
(2)轨道舱的速度大小和周期.
地球的两颗人造卫星质量之比m1∶m2=1∶2,轨道半径之比r1∶r2=1∶2.求:
(1)线速度大小之比.
(2)角速度之比.
(3)运行周期之比.
(4)向心力大小之比.
已知“天宫一号”在地球上空的圆轨道上运行时离地面的高度为h。地球半径为R,地球表面的重力加速度为g,万有引力常量为G。求:
(1)地球的密度为多少?
(2)“天宫一号”在该圆轨道上运行时速度v的大小;
(15分)如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地球表面的高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.
(1)求卫星B的运行周期.
(2)如果卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、A、B在同一直线上),则至少经过多长时间,它们再一次相距最近?
2009年12月,我国自主研制的第一颗为青少年服务的科学实验卫星“希望一号”在太原卫星发射中心升空.“希望一号”卫星主要飞行任务是搭载青少年提出的“天圆地方”科学实验方案、建立业余无线电空间通讯及进行太空摄影.由于是为我国青少年研制的第一颗科学实验卫星,有关方面专门邀请了来自全国的50位热爱航天事业的中小学生到现场观看卫星发射的全过程.
(1)上图是某监测系统每隔2.5s拍摄的关于起始匀加速阶段火箭的一组照片.已知火箭的长度为40m,用刻度尺测量照片上的长度,结果如图所示.求火箭在照片中第2个像所对应时刻的瞬时速度大小.
(2)假设“希望一号”卫星整体质量2350千克,图示时段长征三号甲运载火箭质量200吨.取g=" 10" m/s2 ,求火箭的推力.
(3)已知地球半径为R,地球表面的重力加速度为g,“希望一号”卫星在距地球表面高为h的轨道上绕地球做匀速圆周运动.求“希望一号”卫星环绕地球运行的周期.
试题篮
()