如图所示,质量M=3.5kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2m,其左端放有一质量为0.5kg的滑块Q。水平放置的轻弹簧左端固定,质量为1kg的小物块P置于桌面上的A点并与弹簧的右端接触。此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF=6J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5m处。已知AB间距L1=5cm,A点离桌子边沿C点距离L2=90cm,P与桌面间动摩擦因数,P、Q与小车表面间动摩擦因数。(g=10m/s2)求:
(1)P到达C点时的速度 vC。
(2)P与Q碰撞后瞬间Q的速度大小。
有人设想:可以在飞船从运行轨道进入返回地球程序时,借飞船需要减速的机会,发射一个小型太空探测器,从而达到节能的目的。如图所示,飞船在圆轨道Ⅰ上绕地球飞行,其轨道半径为地球半径的k倍(k>1)。当飞船通过轨道Ⅰ的A点时,飞船上的发射装置短暂工作,将探测器沿飞船原运动方向射出,并使探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,而飞船在发射探测器后沿椭圆轨道Ⅱ向前运动,其近地点B到地心的距离近似为地球半径R。以上过程中飞船和探测器的质量均可视为不变。已知地球表面的重力加速度为g。
(1)求飞船在轨道Ⅰ运动的速度大小;
(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量。在飞船沿轨道Ⅰ和轨道Ⅱ的运动过程,其动能和引力势能之和保持不变;探测器被射出后的运动过程中,其动能和引力势能之和也保持不变。
①求探测器刚离开飞船时的速度大小;
②已知飞船沿轨道Ⅱ运动过程中,通过A点与B点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。
甲图是我国自主研制的200mm离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器。离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势。离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子。氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出。在加速氙离子的过程中飞船获得推力。
已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q。
(1)将该离子推进器固定在地面上进行试验。求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;
(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B。推进器工作时飞船的总质量可视为不变。求推进器在此次工作过程中喷射的氙离子数目N。
(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况。通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法。
有一长度为l="1" m的木块A,放在足够长的水平地面上.取一无盖长方形木盒万将A罩住,B的左右内壁间的距离为L="9" m. A,B质量相同均为m="1" kg,与地面间的动摩擦因数分别为开始时A与B的左内壁接触,两者以相同的初速度v0 =" 28" rn/s向右运动.已知A与B的左右内壁发生的碰撞时间极短(可忽略不计),且碰撞后A,B互相交换速度.A与B的其它侧面无接触.重力加速度g="10" m/ s2.求:
(1)开始运动后经过多长时间A,B发生第一次,碰撞;
(2)从开始运动到第二次碰撞碰后摩擦产生的热能;
(3)若仅v0未知,其余条件保持不变,(a)要使A,B最后同时停止,而且A与B轻轻接触,初速度场应满足何条件?(b)要使B先停下,且最后全部停下时A运动至B右壁刚好停止,初速度v0应满足何条件?
如图所示,有一内表面光滑的金属盒,底面长为L=1.2m,质量为m1=1kg,放在水平面上,与水平面间的动摩擦因数为μ=0.2,在盒内最右端放一半径为r=0.1m的光滑金属球,质量为m2=1kg,现在盒的左端,给盒一个初速度v=3m/s(盒壁厚度,球与盒发生碰撞的时间和能量损失均忽略不计,g取10m/s2)求:金属盒从开始运动到最后静止所经历的时间?
如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN的半径为R=3.2m,水平部分NP长L=3.5m,物体B静止在足够长的平板小车C上,B与小车的接触面光滑,小车的左端紧贴平台的右端。从M点由静止释放的物体A滑至轨道最右端P点后再滑上小车,物体A滑上小车后若与物体B相碰必粘在一起,它们间无竖直作用力。A与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等。物体A、B和小车C的质量均为1kg,取g=10m/s2。求:
(1)物体A进入N点前瞬间对轨道的压力大小?
(2)物体A在NP上运动的时间?
(3)物体A最终离小车左端的距离为多少?
如图所示,一质量m1=1kg半径R=0.8m的光滑四分之一圆弧滑槽AB,固定于光滑水平台面上,现有可视为质点的滑块m2=15kg,从滑槽顶端A点静止释放,到达底端B后滑上与水平台面等高的水平传送带CD,传送带固定不转动时,滑块恰能到达D端,已知传送带CD的长L=4m,g取10m/s2。
(1)滑块滑到圆弧底端B点时对滑槽的压力多大?滑块从C到D需要多长时间?
(2)如果滑槽不固定,滑块滑到圆弧底端B时的速度多大?
(3)如果滑槽不固定,如果滑槽不固定,为使滑块从C到D历时与第一问相同,传送带应以多大的速度匀速转动?(答案可用根号表示)
质量为1.5 kg的平板车停放在光滑的水平面上,左端放置着一块质量为450 g的小物块,一颗质量为50 g的子弹以vo="100" m/s的速度水平瞬间射入小物块并留在其中,平板车足够长,求小物块与平板车间因摩擦产生的热量。
如图,质量为
的小车静止在光滑的水平面上,小车AB段是半径为
的四分之一圆弧光滑轨道,
段是长为
的水平粗糙轨道,两段轨道相切于
点,一质量为
的滑块在小车上从
点静止开始沿轨道滑下,重力加速度为
。
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从
点由静止下滑,然后滑入
轨道,最后从
点滑出小车,已知滑块质量 ,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道
间的动摩擦因数为
,求:
① 滑块运动过程中,小车的最大速度
;
② 滑块从
运动过程中,小车的位移大小
。
如图所示,一轻绳悬挂着粗细均匀且足够长的棒,棒下端离地面高为h,上端套着一个细环,环和棒的质量均为m,设环和棒间的最大静摩擦力等于滑动摩擦力,且满足最大静摩擦力f=kmg(k为大于1的常数,g为重力加速度),某时刻突然断开轻绳,环和棒一起自由下落,棒每次与地面碰撞时与地面接触的时间极短,且无机械能损失,棒始终保持竖直直立状态,不计空气阻力,求:
(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度大小a;
(2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s;
(3)从断开轻绳到棒和环都静止的过程中,环相对于棒滑动的距离L。
如图所示,在光滑的水平面上,一个质量为3m的小球A,以速度v跟质量为2m的静止的小球B发生碰撞。
(1)若A、B两球发生的是完全非弹性碰撞,求碰撞后小球B的速度?
(2)若A、B两球发生的是弹性碰撞,求碰撞后小球B的速度?
如图所示,竖直放置的两块足够长的平行金属板,相距0.08m,两板间的电压是2400V,在两板间的电场中用丝线悬挂着质量是5×10﹣3kg的带电小球,平衡后,丝线跟竖直方向成30°角,若将丝线剪断,则在剪断丝线后,(g取10m/s2)
(1)说明小球在电场中做什么运动;
(2)求小球的带电量;
(3)设小球原来到负极板的距离为0.06m,则经过多少时间小球碰到金属板?
如图所示三个小球质量均为m,B、C两球用轻弹簧连接后放在光滑水平面上,A球以速度沿B、C两球的球心连线向B球运动,碰后A、B两球粘在一起。问:
(1)A、B两球刚刚粘合在一起时的速度是多大?
(2)弹簧压缩至最短时三个小球的速度是多大?
(3)弹簧压缩至最短时弹簧的弹性势能.
如下图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°由静止释放,小球到达最低点时与Q发生完全弹性正碰。已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,平板车与Q的质量关系是M:m=4:1,重力加速度为g.求:
(1)小物块Q离开平板车P时,P和Q的速度大小?
(2)平板车P的长度为多少?
(3)小物块Q落地时与平板车P的水平距离为多少?
试题篮
()