如图所示,水平放置的平行板电容器,上板带负电,下板带正电,断开电源,带电小球以速度v0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,小球仍以相同的速度v0从原处飞入,则带电小球
A.仍沿原轨迹由下板边缘飞出 |
B.将打在下板中央 |
C.不发生偏转,沿直线运动 |
D.若上板不动,将下板上移一段距离,小球可能打在下板的中央 |
如图所示,半径为L1=2 m的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1=T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端沿逆时针方向匀速转动,角速度为ω=rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2的总阻值为4R),图中的平行板长度为L2=2 m,宽度为d=2 m.图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v0=0.5 m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:
(1)在0~4 s内,平行板间的电势差UMN;
(2)带电粒子飞出电场时的速度;
(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B2应满足的条件.
如图所示,在两条平行的虚线间存在着宽度为L、电场强度为E的匀强电场,在与右侧虚线相距为L处有一个与电场平行的屏.现有一电荷量为+q、质量为m的带电粒子(重力不计),以垂直于电场线方向的初速度v0射入电场中,v0方向的延长线与屏的交点为O.试求:
(1)粒子从射入到打到屏上所用的时间;
(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值;
(3)粒子打在屏上的点P到O距离x.
如图所示,一带电液滴在重力和匀强电场对它的电场力作用下,从静止开始由b沿直线运动到d,且bd与竖直方向所夹的锐角为45°,则下列结论正确的是( )
A.液滴受到的电场力与重力大小相等 |
B.此液滴带负电 |
C.合力对液滴做的总功等于零 |
D.液滴的电势能减少 |
如图中虚线为匀强电场中与场强方向垂直的等间距平行直线,两粒子M、N质量相等,所带电荷的绝对值也相等.现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示.点a.b.c为实线与虚线的交点,已知O点电势高于c点电势.若不计重力,则( )
A.M带负电荷,N带正电荷 |
B.N在a点的速度与M在c点的速度大小相同 |
C.N在从O点运动至a点的过程中克服电场力做功 |
D.M在从O点运动至b点的过程中,电场力对它做的功等于零 |
如图所示,在矩形区域abcd内有匀强电场和匀强磁场。已知电场方向平行于ad边且由a向d,磁场方面垂直于abcd平面,ab边长为,ad边长为2L。一带电粒子从ad边的中点O平行于ab方向以大小为v0的速度射入场区,恰好做匀速直线运动;若撤去电场,其它条件不变,则粒子从c点射出场区(粒子重力不计)。
(1)求撤去电场后,该粒子在磁场中的运动时间;
(2)若撤去磁场,其它条件不变,求粒子射出电场时的速度大小;
(3)若在(2)问中,粒子射出矩形区域abcd后立即进入另一矩形磁场区域,该矩形磁场区域的磁感应强度大小和方向与(2)问中撤去的磁场完全相同,粒子经过该矩形区域后速度平行bc,试求该矩形区域的最小面积。
如图所示,一带电平行板电容器与水平方向成37°放置,下方有绝缘挡板支撑,板间距d=2.88cm,一带正电的小球的质量为0.02g,电荷量为10﹣7C,由电容器的中心A点静止释放恰好沿水平直线AB向右运动,从上极板边缘飞出进入边界BC右侧的水平向左的匀强电场区域,场强为2×l03V/m,经过一段时间后发现小球打在竖直挡板C点正下方的D处,(取g=10m/s2)求:
(1)平行板电容器内的场强大小
(2)小球从上极板边缘飞出的速度
(3)CD间的距离.
如图(a)所示,水平放置的平行金属板AB间的距离d=0.1m,板长L=0.3m.距金属板右端x=0.5m处竖直放置一足够大的荧光屏。现在AB板间加如图(b)所示的方波形电压,已知 U0=1.0×102V。有大量带正电的相同粒子以平行于金属板方向的速度从AB正中间持续射入,粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-2C,速度大小均为v0=1.0×104m/s。带电粒子的重力不计。求:
(1)在t=0时刻进入的粒子射出电场时竖直方向的速度;
(2)荧光屏上出现的光带长度。
如图所示,在oxy坐标平面内有一矩形区域ABCD,AD边在x轴上,ABCD区域恰能均分成边长为L的三个正方形区域I、II、III,区域I、III内存大场强大小均为E的匀强电场,场强方向如图所示,区域II内无电场,(不计电子所受重力和空气阻力)。
(1)在AB边的中点由静止释放一电了,求电子离开ABCD区域的位置到D点的距离d;
(2)在I区域内适当位置由静止释放电子,电子恰从D点离开ABCD区域,求释放位置的纵坐标y与横坐标x之间的关系;
(3)若将左侧电场III整体水平向右移动L/n()的距离(C.D点不随电场移动),仍在I区域内适当位置由静止释放电子,电子也恰从D点离开ABCD区域,释放位置的纵坐标与横坐标之间的关系。
(15分)某一水平面内有一直角坐标系平面,和的区间内有一沿轴负方向的有理想边界的匀强电场,场强大小为;在和的区间内有一沿轴负方向的有理想边界的匀强电场场强大小为且一比荷为带负电粒子从直角坐标系平面内的坐标原点以很小的速度进入匀强电场,计算时不计此速度和粒子自身的重力,且只考虑粒子在平面内的运动。试求:
(1)粒子从O点进入到离开处的电场所需的时间;
(2)电子离开处的电场时的坐标;
(3)电子离开处的电场时的速度大小和方向。
如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示。t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,时间内微粒匀速运动,T时刻微粒恰好经金属边缘飞出。微粒运动过程中未与金属板接触。重力加速度的大小为g。关于微粒在时间内运动的描述,正确的是
A.末速度大小为 | B.末速度沿水平方向 |
C.重力势能减少了 | D.克服电场力做功为 |
如图所示,在x轴下方的区域内存在+y方向的匀强电场,电场强度为E.在x轴上方以原点O为圆心、半径为R的半圆形区域内存在匀强磁场,磁场的方向垂直于xoy平面向外,磁感应强度为B.﹣y轴上的A点与O点的距离为d,一个质量为m、电荷量为q的带正电粒子从A点由静止释放,经电场加速后从O点射入磁场,不计粒子的重力.
(1)求粒子在磁场中运动的轨道半径r;
(2)要使粒子进人磁场之后不再经过x轴,求电场强度的取值范围;
(3)改变电场强度,使得粒子经过x轴时与x轴成θ=30°的夹角,求此时粒子在磁场中的运动时间t及经过x轴的位置坐标值x0.
如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数μ=0.30,BCD是半径为R=0.2m的光滑圆弧轨道,它们相切于B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E=4.0×103N/C,质量m=0.20kg的带电滑块从斜面顶端由静止开始滑下。已知斜面AB对应的高度h=0.24m,滑块带电荷q=-5.0×10-4 C,取重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80。求:
(1)滑块从斜面最高点滑到斜面底端B点时的速度大小;
(2)滑块滑到圆弧轨道最低点C时对轨道的压力。
一带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下。若不计空气阻力,则此带电油滴从a运动到b的过程中,能量变化情况为 ( )
A.动能减小 |
B.电势能增加 |
C.动能和电势能之和减小 |
D.重力势能和电势能之和增加 |
如图所示,在xOy平面的第一象限内,分布有沿x轴负方向的场强E=×104N/C的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B1="0.2" T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B2的匀强磁场。在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,P处连接有一段长度d=lcm内径不计的准直管,管内由于静电屏蔽没有电场。y轴负方向上距O点cm的粒子源S可以向第四象限平面内各个方向发射a粒子,假设发射的a粒子速度大小v均为2×105m/s,此时有粒子通过准直管进入电场, 打到平板和准直管管壁上的a粒子均被吸收。已知a粒子带正电,比荷为5×l07C/kg,重力不计,求:
(1)a粒子在第四象限的磁场中运动时的轨道半径和粒子从S到达P孔的时间;
(2)除了通过准直管的a粒子外,为使其余a粒子都不能进入电场,平板OM的长度至少是多长?
(3)经过准直管进入电场中运动的a粒子,第一次到达y轴的位置与O点的距离;
(4)要使离开电场的a粒子能回到粒子源S处,磁感应强度B2应为多大?
试题篮
()