如图, 实线为高速运动正粒子在位于O点的点电荷附近的运动轨迹,M、N和Q为轨迹上的三点,N点离点电荷最近,Q点比M点离点电荷更远,不计正粒子的重力,则( )
A.正粒子在M点的速率比在Q点的大 |
B.三点中,正粒子在N点的电势能最小 |
C.在点电荷产生的电场中,M点的电势比Q点的低 |
D.正粒子从M点运动到Q点,电场力对它做的总功为正功 |
放在粗糙水平面上的物体受到水平拉力的作用,在0~6 s内其速度与时间图像和该拉力的功率与时间图像分别如图所示,g=10m/s2,下列说法正确的是( )
A.0~2 s内物体位移大小为12m |
B.0~2 s内拉力恒为5N |
C.合力在0~6 s内做的功与0~2 s内做的功均为30J |
D.动摩擦因素为μ=0.15 |
如图甲所示,在竖直平面内有一个直角三角形斜面体,倾角θ为300,斜边长为x0,以斜面顶部O点为坐标轴原点,沿斜面向下建立一个一维坐标x轴。斜面顶部安装一个小的滑轮,通过定滑轮连接两个物体A、B(均可视为质点),其质量分别为m1、m2,所有摩擦均不计,开始时A处于斜面顶部,并取斜面底面所处的水平面为零重力势能面,B物体距离零势能面的距离为;现在A物体上施加一个平行斜面斜向下的恒力F,使A由静止向下运动。当A向下运动位移x0时,B物体的机械能随轴坐标的变化规律如图乙,则结合图象可求:
(1)B物体最初的机械能E1和上升x0时的机械能E2;
(2)恒力F的大小。
一带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下。若不计空气阻力,则此带电油滴从a运动到b的过程中,能量变化情况为
A.动能减小 |
B.动能和电势能之和减小 |
C.电势能增加 |
D.重力势能和电势能之和增加 |
如图所示,一小物块自平台上以速度水平抛出,刚好落在邻近一倾角为的粗糙斜面顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差m,小物块与斜面间的动摩擦因数为,点离点所在平面的高度m。有一半径为R的光滑圆轨道与斜面AB在B点平滑连接, 已知,,取m/s2。求:
(1)小物块水平抛出的初速度是多少;
(2)小物块能够通过圆轨道,圆轨道半径R的最大值。
“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343 km的圆轨道上运行了77圈,运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定飞行,如果不进行“轨道维持”,由于飞船受到轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况是 ( )
A.动能、重力势能和机械能逐渐减少 |
B.重力势能逐渐减小,动能逐渐增大,机械能不变 |
C.重力势能逐渐增大,动能逐渐减小,机械能不变 |
D.重力势能逐渐减小,动能逐渐增大,机械能逐渐减小 |
一轻质细绳一端系一质量为m="0.05" kg 的小球A,另一端套在光滑水平细轴O上,O到小球的距离为L=0.1m,小球刚好与水平地面接触,但无相互作用。在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,二者之间的水平距离s=2m,如图所示。现有一滑块B,质量也为m,从斜面上高度h=3m处由静止滑下,与小球碰撞时没有机械能损失、二者互换速度,与档板碰撞时以同样大小的速率反弹。若不计空气阻力,并将滑块和小球都视为质点,滑块与水平地面之间的动摩擦因数μ=0.25,g取10m/s2。求:小球在竖直平面内做完整圆周运动的次数。
如图所示,A车的质量为m,沿光滑水平面以速度v1向质量为4m静止的B车运动,B车后面有弹簧,将弹簧压缩,设在整个过程中始终处于弹簧的弹性限度内,求在此运动过程中:
(1)弹簧的最大弹性势能;
(2)B车的最大速度。
如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为6 m/s2,方向沿斜面向下,g取10 m/s2,那么,在物块向上运动的过程中,下列说法正确的是 ( )
A.物块的机械能一定减小 |
B.物块的机械能一定增加 |
C.物块的机械能可能不变 |
D.物块的机械能可能增加也可能减小 |
质量为m的物体,在距地面h高处以g/2的加速度由静止开始竖直落下至地面,则下落过程中( )
A.物体的动能增加3mgh/2 | B.物体的重力势能减少了mgh/2 |
C.物体的机械能减少了mgh | D.物体的重力做的功为mgh |
如图所示,轻质弹簧竖直放置在水平地面上,它的正上方有一金属块从高处自由下落,从金属块自由下落到第一次速度为零的过程中( )
A.弹力从没做正功 |
B.重力先做正功,后做负功 |
C.金属块的动能最大时,弹簧的弹性势能为零 |
D.金属块的动能为零时,弹簧的弹性势能最大 |
如图所示,某段滑雪雪道倾角为300,总质量为m的滑雪运动员从距底端高为h处的雪道上由静止开始匀加速下滑,加速度为。运动员从上向下滑到底端的过程中( )
A.合外力做功为 | B.增加的动能为 |
C.克服摩擦力做功为 | D.减少的机械能为 |
如图所示,在粗糙的水平面上,质量相等的两个物体A、B间用一轻质弹簧相连组成系统。且该系统在水平拉力F作用下以相同加速度保持间距不变一起做匀加速直线运动,当它们的总动能为2Ek时撤去水平力F,最后系统停止运动。不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F到系统停止运动的过程中( )
A.外力对物体A所做总功的绝对值等于Ek
B.物体A克服摩擦阻力做的功等于Ek
C.系统克服摩擦阻力做的功可能等于系统的总动能2Ek
D.系统克服摩擦阻力做的功一定等于系统机械能的减小量
2010年11月23日,第16届亚运会跳水展开女子双人10米跳台的争夺,如图所示,中国队陈若琳和汪皓夺取金牌.在亚运会高台跳水比赛中,质量为的跳水运动员进入水中后受到水的阻力(包含浮力)而竖直向下做减速运动,设水对她的阻力大小恒为,则在她减速下降深度为的过程中,下列说法正确的是(为当地的重力加速度)( )
A.她的动能减少了Fh | B.她的重力势能减少了mgh |
C.她的机械能减少了(F-mg)h | D.她的机械能减少了mgh |
关于“探究恒力做功与动能变化”的实验,下列说法中正确的是( )
A.应调节定滑轮的高度使细绳与木板平行 |
B.应调节定滑轮的高度使细绳保持水平 |
C.平衡摩擦力时,若纸带上打出的点越来越密,就应调大斜面倾角 |
D.平衡摩擦力时,若纸带上打出的点越来越疏,就应调大斜面倾角 |
试题篮
()