如图所示,在0≤x≤b、0≤y≤a的长方形区域中有一磁感应强度大小为B的匀强磁场,磁场的方向垂直于xOy平面向外。O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内的第一象限内。己知粒子在磁场中做圆周运动的周期为T,最先从磁场上边界中飞出的粒子经历的时间为,最后从磁场中飞出的粒子经历的时间为。不计粒子的重力及粒子间的相互作用,则:( )
A.粒子的射入磁场的速度大小 |
B.粒子圆周运动的半径 |
C.长方形区域的边长满足关系 |
D.长方形区域的边长满足关系 |
把摆球带电的单摆置于匀强磁场中,如图所示,当带电摆球最初两次经过最低点时,相同的量是 ( )
A.小球受到的洛仑兹力 | B.摆线的拉力 |
C.小球的动能 | D.小球的加速度 |
等腰梯形导线框从位于匀强磁场上方一定高度处自由下落,已知下落过程两平行边始终竖直,左平行边长为a,右平行边长为2a.从导线框进入磁场开始计时,位移为时,导线框做匀速运动.则从导线框刚进入磁场开始,下列判断正确的是( )
A.在0~这段位移内,导线框可能做匀加速运动 |
B.在~这段位移内,导线框减少的重力势能最终全部转化为内能 |
C.在~2a这段位移内,导线框可能做减速运动 |
D.在0~与~2a位移内,导线框受到的安培力方向相同 |
如图所示,一个质量为m,带q(q >0)电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点垂直于AC边飞出该三角形,可在适当的位置加一个垂直于纸面向里、磁感应强度为B的匀强磁场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力,试求:
(1)画出正三角形区域磁场的边长最小时的磁场区域及粒子运动的轨迹。
(2)该粒子在磁场里运动的时间t。
(3)该正三角形区域磁场的最小边长。
如图所示为圆柱形区域的横截面,在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射,穿过此区域的时间为t ,在该区域加沿轴线垂直纸面向外方向的匀磁强场,磁感应强度大小为B,带电粒子仍以同一初速度沿截面直径入射并沿某一直径方向飞出此区域时,速度方向偏转角为600,如图所示。根据上述条件可求下列哪几个物理量 ( )
① 带电粒子的比荷 ② 带电粒子在磁场中运动的周期
③ 带电粒子在磁场中运动的半径 ④ 带电粒子的初速度
A.①② | B.①③ | C.②③ | D.③④ |
如图所示,三根通电长直导线P、Q、R互相平行,垂直纸面放置,其间距均为a,电流强度均为I,方向垂直纸面向里(已知电流为I的长直导线产生的磁场中,距导线r处的磁感应强度B=kI/r,其中k为常数)。某时刻有一电子(质量为m、电量为e)正好经过原点O,速度大小为v,方向沿y轴正方向,则电子此时所受磁场力为 ( )
A.方向垂直纸面向里,大小为 |
B.方向指向x轴正方向,大小为 |
C.方向垂直纸面向里,大小为 |
D.方向指向x轴正方向,大小为 |
如图所示是某粒子速度选择器截面的示意图,在一半径为R=10cm的圆柱形桶内有的匀强磁场,方向平行于轴线,在圆柱桶某一截面直径的两端开有小孔,作为入射孔和出射孔,粒子束以不同角度入射,最后有不同速度的粒子束射出。现有一粒子源发射比荷为的正粒子,粒子束中速度分布连续。当角时,出射粒子速度v的大小是( )
A. | B. | C. | D. |
如图是某离子速度选择器的原理示意图,在一半径为R=10cm的圆形筒内有B=1×10-4T的匀强磁场,方向平行于圆的轴线.在圆柱形筒上某一直径两端开有小孔a、b分别作为入射孔和出射孔.现有一束比荷为q/m=2×1011C/kg的正离子,以不同角度α入射,最后有不同速度的离子束射出,其中入射角α=30°,且不经碰撞而直接从出身孔射出的离子的速度v大小是
A.4×105m/s | B.4×106m/s | C.2×105m/s | D.2×106m/s |
如图所示,一根长度L的直导体棒中通过以大小为I的电流,静止放在导轨上,垂直于导体棒的匀强磁场的磁感应强度为B,B的方向与竖直方向成θ角,下列说法正确的是( )
A.导体棒受到磁场力大小为BLIsinθ |
B.导体棒对轨道压力大小为mg﹣BILsinθ |
C.导体棒受到导轨摩擦力为μ(mg﹣BILsinθ) |
D.一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于使沿途空气电离而使粒子的动能逐渐减小 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界一边长L的正三角形(边界上有磁场)ABC为三角形的三个顶点,今有一质量为m、电荷量为+q的粒子(不计重力),以速度,从AB边上的某点P既垂直于AB边又垂直于磁场的方向射入,然后从BC边上某点Q射出,若从P点射入的粒子能从Q点射出,则
A. | B. | C. | D. |
电子质量为m、电荷量为q,以速度v0与x轴成600角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1)粒子运动的半径R与周期T
(2)OP的长度;
(3)电子从由O点射入到落在P点所需的时间t.
设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在静电力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,下述说法中不正确的是( )
A.这离子必带正电荷 |
B.A点和B点位于同一高度 |
C.离子在C点时速度最大 |
D.离子到达B点后,将沿原曲线返回A点 |
如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q=1.0×10-3C,g取10m/s2。求:
(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。
试题篮
()