如图所示,回旋加速器D形盒的半径为R,用来加速质量为m,电量为q的质子,质子每次经过电场区时,都恰好被电压为U的电场加速,且电场可视为匀强电场,使质子由静止加速到能量为E后,由A孔射出 。下列说法正确的是( )
A.若加速电压U越高,质子的能量E将越大。 |
B.若D形盒半径R越大,质子的能量E将越大。 |
C.若加速电压U越高,质子在加速器中的运动时间将越长。 |
D.若加速电压U越高,质子在加速器中的运动时间将越短。 |
如图所示为质谱仪的原理图,A为粒子加速器,电压为U1;B为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为B2。今有一质量为m、电量为q的初速为零的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的匀速圆周运动,求:
(1)粒子进入速度选择器的速度v;
(2)速度选择器的电压U2 ;
(3)粒子在B2磁场中做匀速圆周运动的半径R。
回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。
(1)当令医学影像诊断设备堪称"现代医学高科技之冠",它医疗诊断中,常利用能放射正电子的同位素碳11作示踪原子。碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产牛另一粒子,试写出核反应方程。若碳11的半衰期为,经剩余碳11的质量占原来的百分之几?(结果取两位有效数字)
(2)回旋加速器的原理如图.和是两个1中空半经为R的半圆金属盒,它们接在电压一定、频率为的交流电源上,位于圆心处的质子源能不断产生质子(初速度可以忽略,重力不计).它们在两盒之间被电场加速,、置于与盒面垂直的磁感应强度为B的匀强磁场中。若质子束从回旋加速器输出时的平均功率为.求输出时质子束的等效电流与、、、的关系式(忽略质子在电场中的运动时间,其最大速度远小于光速)。
(3)推理说明:质子在回旋加速器中运动时,随轨道半径的增大,同一盒中相邻轨道的半径之差是增大、减小还是不变?
环形对撞机是研究高能粒子的重要装置,其工作原理的示意图如图所示。正、负离子由静止经过电压为U的直线加速器加速后,沿圆环切线方向射入对撞机的真空环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B。两种带电粒子将被局限在环状空腔内,沿相反方向做半径相等的匀速圆周运动,从而在碰撞去迎面相撞。为维持带电粒子在环状空腔中的匀速圆周运动,下列说法中正确的是( )
A.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越大
B.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越小
C.对于给定的带电粒子,加速电压U越大,粒子运动的周期越小
D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变
如图,用回旋加速器来加速带电粒子,以下说法正确的是
A.图中加速器出口射出的是带正电粒子 |
B.D形盒的狭缝间所加的电压必是交变电压 |
C.强磁场对带电粒子做功,使其动能增大 |
D.粒子在加速器中的半径越大,周期越长 |
回旋加速器的工作原理如图所示,置于高真空中的D形金属盒,半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。现用回旋加速器加速质子,为了使质子获得的动能增大为原来的4倍,可以( )
A.将D型金属盒的半径增大为原来的2倍 |
B.将磁场的磁感应强度增大为原来的4倍 |
C.将加速电场的电压增大为原来的4倍 |
D.将加速电场的频率增大为原来的4倍 |
1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝距离为d,。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处(电场和磁场)所需的总时间t;
下图是质谱仪工作原理的示意图。带电粒子a、b经电压U加速(在A点初速度为零)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处。图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则
A.a的质量一定大于b的质量 |
B.a的电荷量一定大于b的电荷量 |
C.a运动的时间大于b运动的时间 |
D.a的比荷大于b的比荷 |
如图所示,回旋加速器的半径为R,匀强磁场的磁感应强度为B,高频电场的电压为U,S0为粒子源,S’为引出口.若被加速的粒子质量为m,电荷量为q,设带电粒子质量不变,且不考虑粒子从粒子源射出时的能量.问:
(1)外加电场的变化周期为多少?
(2)粒子从加速器中射出时的能量为多少?
(3)粒子以加速器中被加速的时间共为多少?
如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场,然后让粒子垂直进入磁感应强度为B的磁场中,最后打到底片D上.
(1)粒子进入磁场时的速率。
(2)求粒子在磁场中运动的轨道半径。
如图所示是一个回旋加速器的示意图,其中两个半圆形金属盒内有方向垂直于纸面,磁感强度为B的匀强磁场,两金属盒分别接到交变电源的两极上,在两盒间的狭缝处形成交变的电场.质量为m、电量为q的带电粒子从下面盒的中心O点进入,进入时的初速可以忽略,经两盒间狭缝处的电场加速后进入上面盒内,在磁场中做圆周运动,当它回到狭缝处时,电场恰好反向,再次对粒子加速,进入下面磁场中,从c1处再进入电场中加速,以后则重复前面的过程,并且每次电场对粒子做的功都是W.图中c2、c3、……是后面各次从下面磁场中射出时的位置.
(1)求Oc1的距离.
(2)n为多大时,cncn+1小于或等于Oc1的一半?
质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示.离子源S产生的各种不同正离子束(速度可看作为零),经加速电场(加速电场极板间的距离为d、电势差为U)加速,然后垂直进入磁感应强度为B的有界匀强磁场中做匀速圆周运动,最后到达记录它的照相底片P上.设离子在P上的位置与入口处S1之间的距离为x。
(1)求该离子的荷质比.
(2)若离子源产生的是带电量为q、质量为m1和m2的同位素离子(m1> m2),它们分别到达照相底片上的P1、P2位置(图中末画出),求P1、P2间的距离△x。
(3)若第(2)小题中两同位素离子同时进入加速电场,求它们到达照相底片上的时间差△t(磁场边界与靠近磁场边界的极板间的距离忽略不计).
如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成。已知:静电分析器通道的半径为R,均匀辐射电场的场强为E。磁分析器中有垂直纸面向外的匀强磁场,磁感强度为B。问:(1)为了使位于A处电量为q、质量为m的离子,从静止开始经加速电场加速后沿图中圆弧虚线通过静电分析器,加速电场的电压U应为多大?(2)离子由P点进入磁分析器后,最终打在乳胶片上的Q点,该点距入射点P多远?
图甲所示为回旋加速器的原理示意图,一个扁圆柱形的金属盒子,盒子被分成两半(D形电极),分别与高压交变电源的两极相连,在裂缝处形成一个交变电场,高压交流电源的U-t图象如图乙所示,图中U(×104V),t (×10-7s),在两D形电极裂缝的中心靠近其中一个D形盒处有一离子源K,D形电极位于匀强磁场中,磁场方向垂直于D形电极所在平面,由下向上。从离子源K发出的氘核,在电场作用下,被加速进入盒中.又由于磁场的作用,沿半圆形的轨道运动,并重新进入裂缝。这时恰好改变电场方向,氘核在电场中又一次加速,如此不断循环进行,最后在D形盒边缘被特殊装置引出。(忽略氘核在裂缝中运动的时间)
(1)写出图乙所示的高压交流电源的交流电压瞬时值的表达式;
(2)将此电压加在回旋加速器上,给氘核加速,则匀强磁场的磁感强度应为多少?
(3)若要使氘核获得5.00MeV的能量,需要多少时间?(设氘核正好在电压达到峰值时通过D形盒的狭缝)
(4)D形盒的最大半径R。
试题篮
()