如图是医用回旋加速器示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。现分别加速氘核()和氦核()。下列说法中正确的是( )
A.它们的最大速度相同 |
B.它们的最大动能相同 |
C.它们在D形盒中运动的周期相同 |
D.仅增大高频电源的频率可增大粒子的最大动能 |
如图所示,一个质量为m、电荷量为e的粒子从容器A下方的小孔S,无初速度地飘入电势差为U的加速电场,然后垂直进入磁感应强度为B的匀强磁场中,最后打在照相底片M上。下列说法正确的是:( )
A.粒子进入磁场时的速率 |
B.粒子在磁场中运动的时间 |
C.粒子在磁场中运动的轨道半径 |
D.若容器A中的粒子有初速度,则粒子仍将打在照相底片上的同一位置 |
1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形合D1、D2构成,其间留有空隙,下列说法不正确的是( )
A.离子由加速器的中心附近进入加速器 |
B.离子获得的最大动能与加速电压无关 |
C.离子从磁场中获得能量 |
D.离子从电场中获得能量 |
质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示,离子源S产生的各种不同正离子束(速度可看作为零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P上,设离子在P上的位置到入口处S1的距离为x,则下列判断正确的是 ( )
A.若离子束是同位素(质子数相同质量数不同),x越大,离子质量越小 |
B.若离子的荷质比q/m相同,如果加速电压越大,则x越小 |
C.只要x相同,则离子质量一定相同 |
D.只要x相同,则离子的荷质比一定相同 |
如图所示,回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电两极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的匀强电场,使粒子在通过狭缝时都能得到加速。两D形金属盒处于垂直于盒底面的匀强磁场中,磁场方向如图所示,设匀强磁场的磁感应强度为B, D形金属盒的半径为R,狭缝间的距离为d,匀强电场间的加速电压为U,要增大带电粒子(电荷量为q,质量为m,不计重力)射出时的动能,则下列方法中正确的是
A.增大加速电场间的加速电压 | B.减小狭缝间的距离 |
C.增大磁场的磁感应强度 | D.增大D形金属盒的半径 |
如图所示是质谱仪工作原理的示意图.带电粒子a、b经电压U加速(在A点的初速度为零)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处.图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则( )
A.a的质量一定小于b的质量 |
B.a的电荷量一定大于b的电荷量 |
C.在磁场中a运动的时间大于b运动的时间 |
D.a的比荷大于b的比荷 |
右图甲是回旋加速器的原理示意图。其核心部分是两个D型金属盒,在加速带电粒子时,两金属盒置于匀强磁场中(磁感应强度大小恒定),并分别与高频电源相连。加速时某带电粒子的动能EK随时间t变化规律如下图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断正确的是
A.高频电源的变化周期应该等于tn-tn-1 |
B.在EK-t图象中t4-t3=t3-t2=t2-t1 |
C.粒子加速次数越多,粒子获得的最大动能一定越大 |
D.不同粒子获得的最大动能都相同 |
回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示。设D形盒半径为R。若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f。则下列说法正确的是
A.质子被加速后的最大速度不可能超过2πfR |
B.质子被加速后的最大速度与加速电场的电压大小无关 |
C.只要R足够大,质子的速度可以被加速到任意值 |
D.不改变B和f,该回旋加速器也能用于加速α粒子 |
如图所示,回旋加速器D形盒的半径为R,用来加速质量为m,电量为q的质子,质子每次经过电场区时,都恰好被电压为U的电场加速,且电场可视为匀强电场,使质子由静止加速到能量为E后,由A孔射出 。下列说法正确的是( )
A.若加速电压U越高,质子的能量E将越大。 |
B.若D形盒半径R越大,质子的能量E将越大。 |
C.若加速电压U越高,质子在加速器中的运动时间将越长。 |
D.若加速电压U越高,质子在加速器中的运动时间将越短。 |
环形对撞机是研究高能粒子的重要装置,其工作原理的示意图如图所示。正、负离子由静止经过电压为U的直线加速器加速后,沿圆环切线方向射入对撞机的真空环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B。两种带电粒子将被局限在环状空腔内,沿相反方向做半径相等的匀速圆周运动,从而在碰撞去迎面相撞。为维持带电粒子在环状空腔中的匀速圆周运动,下列说法中正确的是( )
A.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越大
B.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越小
C.对于给定的带电粒子,加速电压U越大,粒子运动的周期越小
D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变
如图,用回旋加速器来加速带电粒子,以下说法正确的是
A.图中加速器出口射出的是带正电粒子 |
B.D形盒的狭缝间所加的电压必是交变电压 |
C.强磁场对带电粒子做功,使其动能增大 |
D.粒子在加速器中的半径越大,周期越长 |
质谱仪是测量带电粒子的质量和分析同位素的重要工具,如图为质谱仪原理示意图.现利用这种质谱议对氢元素进行测量.氢元素的各种同位素从容器A下方的小孔S无初速度飘入电势差为U的加速电场,加速后垂直进入磁感强度为B的匀强磁场中.氢的三种同位素氕、氘、氚的电量之比为1:1:1,质量之比为1:2:3,它们最后打在照相底片D上,形成a、b、c三条“质谱线”. 关于三种同位素进入磁场时速度的排列顺序和a、b、c三条“质谱线” 的排列顺序,下列判断正确的是 。
A.进入磁场时速度从大到小排列的顺序是氚、氘、氕 |
B.进入磁场时速度从大到小排列的顺序是氘、氚、氕 |
C.a、b、c三条质谱线依次排列的顺序是氘、氚、氕 |
D.a、b、c三条质谱线依次排列的顺序是氚、氘、氕 |
关于回旋加速器,下列说法正确的是( )
A.离子从磁场中获得能量 |
B.离子由加速器的中心附近进入加速器 |
C.增大加速器的加速电压,则粒子离开加速器时的动能将变大 |
D.将D形盒的半径加倍,离子获得的动能将增加为4倍 |
回旋加速器的工作原理如图所示,置于高真空中的D形金属盒,半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。现用回旋加速器加速质子,为了使质子获得的动能增大为原来的4倍,可以( )
A.将D型金属盒的半径增大为原来的2倍 |
B.将磁场的磁感应强度增大为原来的4倍 |
C.将加速电场的电压增大为原来的4倍 |
D.将加速电场的频率增大为原来的4倍 |
试题篮
()