关于回旋加速器加速带电粒子所获的能量( )
A.与加速器的半径有关, 半径越大, 能量越大 |
B.与加速器的磁场有关, 磁场越强, 能量越大 |
C.与加速器的电场有关, 电场越强, 能量越大 |
D.与带电粒子的质量和电量均有关, 质量和电量越大, 能量越大 |
下图是质谱仪工作原理的示意图。带电粒子a、b经电压U加速(在A点初速度为零)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处。图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则
A.a的质量一定大于b的质量 |
B.a的电荷量一定大于b的电荷量 |
C.a运动的时间大于b运动的时间 |
D.a的比荷大于b的比荷 |
回旋加速器是用来加速带电粒子的装置,如图所示.它的核心部分是两个D形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过特殊装置被引出.如果用同一回旋加速器分别加速氚核()和α粒子()比较它们所加的高频交流电源的周期和获得的最大动能的大小,有 ( )
A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大 |
B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小 |
C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小 |
D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大 |
关于回旋加速器的下列说法,其中正确的有 ( )
A.电场用来加速带电粒子,磁场则使带电粒子旋转 |
B.电场和磁场同时用来加速带电粒子 |
C.在确定的交流电源下,回旋加速器的半径越大,同一带电粒子获得的动能越大 |
D.同一带电粒子获得的最大动能只与交流电源的电压大小有关,而与交流电源的频率无关 |
如图所示是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。平板S下方有强度为B0的匀强磁场。下列表述正确的是( )
A.质谱仪是分析同位素的重要工具 |
B.速度选择器中的磁场方向垂直纸面向外 |
C.能通过的狭缝P的带电粒子的速率等于E/B |
D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小 |
质谱仪的两大重要组成部分是加速电场和偏转磁场.如图为质谱仪的原理图,设想有一个静止的质量为m、带电量为q的带电粒子(不计重力),经电压为U的加速电场加速后垂直进入磁感应强度为B的偏转磁场中,带电粒子打至底片上的P点,设OP = x,则在图中能正确反映x与U之间的函数关系的是 ( )
如图所示为测定带电粒子比荷()的装置,粒子以一定的初速度进入并沿直线通过速度选择器,速度选择器内有相互正交的匀强磁场和匀强电场,磁感应强度和电场强度 速度选分别为B和E。然后粒子通过平板S上的狭缝P,进入另一匀强磁场,最终打在能记录粒子位置的胶片AlA2上。下列表述正确的是 ( )
A.速度选择器中的磁场方向垂直纸面向里 |
B.能通过狭缝P的带电粒子的速率等于 |
C.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小 |
D.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越大 |
用回旋加速器来加速质子,为了使质子获得的动能增加为原来的4倍,原则上可采用下列哪几种方法:( )
A.将其磁感应强度增大为原来的2倍 |
B.将其磁感应强度增大为原来的4倍 |
C.将D形金属盒的半径增大为原来的2倍 |
D.将D形金属盒的半径增大为原来的4倍 |
如图甲所示是回旋加速器的示意图,其核心部分是两个D形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能Ek随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断中正确的是 ( )
A.在Ek—t图中应有t4一t3=t3一t2=t2—t1 |
B.高频电源的变化周期应该等于tn一tn-1 |
C.粒子加速次数越多,粒子最大动能一定越大 |
D.要想粒子获得的最大动能越大,则要求D形盒的面积也越大 |
欧洲强子对撞机在2010年初重新启动,并取得了将质子加速到1.18万亿ev的阶段成果,为实现质子对撞打下了坚实的基础。质子经过直线加速器加速后进入半径一定的环形加速器,在环形加速器中,质子每次经过位置A时都会被加速(图1),当质子的速度达到要求后,再将它们分成两束引导到对撞轨道中,在对撞轨道中两束质子沿相反方向做匀速圆周运动,并最终实现对撞 (图2)。质子是在磁场的作用下才得以做圆周运动的。下列说法中正确的是( )
A.质子在环形加速器中运动时,轨道所处位置的磁场会逐渐减小 |
B.质子在环形加速器中运动时,轨道所处位置的磁场始终保持不变 |
C.质子在对撞轨道中运动时,轨道所处位置的磁场会逐渐减小 |
D.质子在对撞轨道中运动时,轨道所处位置的磁场始终保持不变 |
用回旋加速器加速质子,为了使质子获得的动能增大为原来的4倍,可以( )
A.将D型金属盒的半径增大为原来的2倍 |
B.将磁场的磁感应强度增大为原来的4倍 |
C.将加速电场的电压增大为原来的4倍 |
D.将加速电场的频率增大为原来的4倍 |
美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量带电粒子方面前进了一步。下图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强大小恒定,且被限制在、板间,如图所示。带电粒子从处以速度沿电场线方向射入加速电场,经加速后再进入型盒中的匀强磁场做匀速圆周运动。对于这种改进后的回旋加速器,下列说法正确的是
A.带电粒子每运动一周被加速两次 |
B.带电粒子每运动一周 |
C.加速粒子的最大速度与D形盒的尺寸有关 |
D.加速电场方向需要做周期性的变化 |
一个用于加速质子的回旋加速器,其D形盒半径为R,垂直D形盒底面的匀强磁场的磁感应强度为B,接在D形盒上的高频电源频率为f.下列说法正确的是( )
A.质子被加速后的最大速度不可能超过2πfR |
B.质子被加速后的最大速度与加速电压的大小无关 |
C.只要R足够大,质子的速度可以被加速到任意值 |
D.不需要改变任何量,这个装置也能用于加速α粒子 |
如图15-5-20所示,有a、b、c、d四个离子,它们带同种电荷且电荷量相等,它们的速率关系为va<vb=vc<vd,质量关系为ma=mb<mc=md.进入速度选择器后,有两种离子从速度选择器中射出,由此可以判定( )
图15-5-20
A.射向P1的是a粒子 | B.射向P2的是b粒子 |
C.射向A1的是c粒子 | D.射向A2的是d粒子 |
试题篮
()