截面积为0.2m2的100匝的线圈A,处在均匀磁场中,磁场的方向垂直线圈截面,如图所示,磁感应强度为B =(0.6-0.2t)T(t为时间,以秒为单位),
R1= 3Ω,R2=6Ω,线圈电阻为r = 1Ω,C=3μF,求:
(1)闭合S1、S2后,通过R2的电流大小和方向;
(2)只把S1切断后,通过R2的电量。
如图所示,有一区域足够大的匀强磁场,磁感应强度为B,磁场方向与水平放置的导轨垂直,导轨宽度为L,右端接有电阻R,MN是一根质量为m的金属棒,金属棒与导轨垂直放置,且接触良好,金属棒与导轨电阻均不计,金属棒与导轨间的动摩擦因数为μ,现给金属棒一水平冲量,使它以初速度沿导轨向左运动,已知金属棒在整个运动过程中,通过任一截面的总电荷量为q,求:
(1)金属棒运动的位移s;
(2)金属棒运动过程中回路产生的焦耳热Q;
(3)金属棒运动的时间t
如图所示,两根相距L平行放置的光滑导电轨道,与水平面的夹角为θ,轨道间有电阻R,处于磁感应强度为B、方向垂直轨道向上的匀强磁场中,一根质量为m、电阻为r的金属杆ab,由静止开始沿导电轨道下滑,设下滑过程中杆ab始终与轨道保持垂直,且接触良好,导电轨道有足够的长度且电阻不计,求:
(1)金属杆的最大速度是多少;
(2)当金属杆的速度刚达到最大时,金属杆下滑的距离为S,求金属杆在此过程中克服安培力做的功;
(3)若开始时就给杆ab沿轨道向下的拉力F使其由静止开始向下做加速度为a的匀加速运动(a>gsinθ),求拉力F与时间t的关系式?
如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是处于同一水平面内相互平行的粗糙长直导轨,间距L=0.2m,R是连接在导轨一端的电阻,ab是跨接在导轨上质量为m=0.1kg的导体棒。从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好。图乙是棒的v-t图象,其中OA段是直线,AC是曲线,DE是曲线图象的渐进线,小型电动机在12s末达到额定功率P=4.5W,此后保持功率不变。除R外,其余部分电阻均不计,g=10m/s2,求:
(1)ab在0~12s内的加速度大小;
(2)ab与导轨间的动摩擦因数;
(3)电阻R的阻值;
(4)若t=17s时,导体棒ab达到最大速度,从0~17s内的位移为100m,求12~17s内,R上产生的热量。
电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的本质联系。
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,这就是法拉第电磁感应定律。
(1)如图所示,把矩形线框abcd放在磁感应强度为B的匀强磁场里,线框平面跟磁感线垂直。设线框可动部分ab的长度为L,它以速度v向右匀速运动。请根据法拉第电磁感应定律推导出闭合电路的感应电动势E=BLv。
(2)两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。两导轨间接有阻值为R的电阻。一根质量为m的均匀直金属杆MN放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆MN由静止沿导轨开始下滑。求
①当导体棒的速度为v(未达到最大速度)时,通过MN棒的电流大小和方向;
②导体棒运动的最大速度。
如图甲所示,相距为L的光滑平行金属导轨水平放置,导轨一部分处在以OO′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B,方向垂直导轨平面向下,导轨右侧接有定值电阻R,导轨电阻忽略不计。在距边界OO′也为L处垂直导轨放置一质量为m、电阻r的金属杆ab。
(1)若金属杆ab固定在导轨上的初位置,磁场的磁感应强度在t时间内由B均匀减小到零,求此过程中电阻R上产生的电量q。
(2)若ab杆在恒力作用下由静止开始向右运动3L距离,其速度—位移的关系图象如图乙所示(图中所示量为已知量)。求此过程中电阻R上产生的焦耳热Q1。
(3)若ab杆固定在导轨上的初始位置,使匀强磁场保持大小不变绕OO′轴匀速转动。若磁场方向由图示位置开始转过的过程中,电路中产生的焦耳热为Q2. 则磁场转动的角速度ω大小是多少?
面积S = 0.2m2、n = 100匝的圆形线圈,处在如图所示的磁场内,磁感应强度B随时间t变化的规律是B = 0.02t,R = 3Ω,C = 30μF,线圈电阻r = 1Ω,其余导线电阻不计,求:
(1)通过R的电流大小和方向.
(2)电容器C所带的电荷量.
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导轨之间有相同的动摩擦因数μ,导轨电阻不计,回路总电阻为2R,整个装置处于磁感应强度大小为B、方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力作用下沿导轨向右匀速运动时,cd杆也正好以某一速度向下做匀速运动,设运动过程中金属细杆ab、cd与导轨接触良好,重力加速度为g,求:
(1)ab杆匀速运动的速度v1;
(2)ab杆所受拉力F;
(3)ab杆以v1匀速运动时,cd杆以v2(v2已知)匀速运动,则在cd杆向下运动过程中,整个回路中产生的焦耳热.
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
在倾角θ=30°的斜面上,固定一金属框,宽L=0.5 m,接入电动势E =12V、内阻不计的电池和滑动变阻器。垂直框面放有一根质量m=0.1kg,电阻为r=1.6Ω的金属棒ab,不计它与框架间的摩擦力,不计框架电阻。整个装置放在磁感应强度B=0.8T,垂直框面向上的匀强磁场中,如图所示,调节滑动变阻器的阻值,当R的阻值为多少时,可使金属棒静止在框架上?(假设阻值R可满足需要)(g="10" m/s2)
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒和导轨的电阻不计。导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。(设导轨足够长)求:
(1)力F的大小。
(2)t=1.2s时,导体棒的加速度。
(3)估算1.6s内电阻上产生的热量。
如图所示,倾角θ=30°、宽为L=1m的足够长的U形光滑金属导轨固定在磁感应强度B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上。现用一平行于导轨的F牵引一根质量m=0.2kg、电阻R=1Ω的导体棒ab由静止开始沿导轨向上滑动;牵引力的功率恒定为P=90W,经过t=2s导体棒刚达到稳定速度v时棒上滑的距离s=11.9m。导体棒ab始终垂直导轨且与导轨接触良好,不计导轨电阻及一切摩擦,取g=10m/s2。求:
(1)从开始运动到达到稳定速度过程中导体棒产生的焦耳热Q1;
(2)若在导体棒沿导轨上滑达到稳定速度前某时刻撤去牵引力,从撤去牵引力到棒的速度减为零的过程中通过导体棒的电荷量为q=0.48C,导体棒产生的焦耳热为Q2=1.12J,则撤去牵引力时棒的速度v′多大?
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:
(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离是多少?
如图所示,M1N1、M2N2是两根处于同一水平面内的平行导轨,导轨间距离是d=0.5m,导轨左端接有定值电阻R=2Ω,质量为m=0.1kg的滑块垂直于导轨,可在导轨上左右滑动并与导轨有良好的接触,滑动过程中滑块与导轨间的摩擦力恒为f=1N,滑块用绝缘细线与质量为M=0.2kg的重物连接,细线跨过光滑的定滑轮,整个装置放在竖直向上的匀强磁场中,磁场的磁感应强度是B=2T,将滑块由静止释放.设导轨足够长,磁场足够大,M未落地,且不计导轨和滑块的电阻.g=10m/s2,求:
滑块能获得的最大动能
滑块的加速度为a=2m/s2时的速度
设滑块从开始运动到获得最大速度的过程中,电流在电阻R上所做的电功是w=0.8J,求此过程中滑块滑动的距离.
试题篮
()