如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30 m.导轨电阻忽略不计,其间连接有固定电阻R=0.40 Ω.导轨上停放一质量m=0.10 kg、电阻r=0.20 Ω的金属杆ab,整个装置处于磁感应强度B=0.50 T的匀强磁场中,磁场方向竖直向下.用一外力F沿水平方向拉金属杆ab,使之由静止开始运动,电压传感器可将R两端的电压U即时采集并输入电脑,获得电压U随时间t变化的关系如图乙所示.
(1)利用上述条件证明金属杆做匀加速直线运动,并计算加速度的大小;
(2)求第2 s末外力F的瞬时功率;
(3)如果水平外力从静止开始拉动杆2 s所做的功W=0.35 J,求金属杆上产生的焦耳热
为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。如图所示,自行车后轮由半径的金属内圈、半径的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为的小灯泡.在支架上装有磁铁,形成了磁感应强度、方向垂直纸面向外的“扇形”匀强磁场,其内半径为、外半径为、张角.后轮以角速度,相对转轴转动.若不计其它电阻,忽略磁场的边缘效应.
(1)当金属条进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;
(2)当金属条进入“扇形”磁场时,画出“闪烁”装置的电路图;
(3)从金属条进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差随时间变化的图象;
如图所示,顶角θ=45°的金属导轨MON固定在水平面内,导轨处在方向竖直向下、磁感应强度为B的匀强磁场中.一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向右滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均为r.导体棒与导轨接触点为a和b,导体棒在滑动过程中始终保持与导轨良好接触.t=0时导体棒位于顶角O处,则流过导体棒的电流强度I、导体棒内产生的焦耳热Q、导体棒做匀速直线运动时水平外力F、导体棒的电功率P各量大小随时间变化的关系正确的是
图1是交流发电机模型示意图.在磁感应强度为B的匀强磁场中,有一矩形线图abcd可绕线圈平面内垂直于磁感线的轴OO′转动,由线圈引出的导线ae和df分别与两个跟线圈一起绕OO′转动的金属圈环相连接,金属圈环又分别与两个固定的电刷保持滑动接触,这样矩形线圈在转动中就可以保持和外电阻R形成闭合电路.图2是线圈的正视图,导线ab和cd分别用它们的横截面来表示.已知ab长度为L1,bc长度为L2,线圈以恒定角速度ω逆时针转动.(共N匝线圈)
(1)线圈平面处于中性面位置时开始计时,推导t时刻整个线圈中的感应电动势e1表达式;
(2)线圈平面处于与中性面成φ0夹角位置时开始计时,如图3所示,写出t时刻整个线圈中的感应电动势e2的表达式;
(3)若线圈电阻为r,求电阻R两端测得的电压,线圈每转动一周电阻R上产生的焦耳热.(其它电阻均不计)
如图所示,在磁感应强度B=0.2T的水平匀强磁场中,有一边长为L=10cm,匝数N=100匝,电阻r=1Ω的正方形线圈绕垂直于磁感线的轴匀速转动,转速r/s,有一电阻R=9Ω,通过电刷与两滑环接触,R两端接有一理想电压表,求:
(1)若从线圈通过中性面时开始计时,写出电动势瞬时值表达式;
(2)求从中性面开始转过T时的感应电动势与电压表的示数;
(3在1分钟内外力驱动线圈转动所作的功;
倾角为=37°,电阻不计,间距L=0.5m,长度足够的平行导轨处,加有磁感应强度B=1.0T,方向垂直于导轨平面的匀强磁场,导轨两端各接一个阻值的电阻,另一横跨在平行导轨间金属棒的质量m=0.2kg,电阻r=1Ω,与导轨间的动摩擦因数μ=0.5,金属棒以平行导轨向上的初速度上滑,直至上升到最高点过程中,通过上端电阻的电量(取,sin37°=0.6,cos37°=0.8),求此过程中:
(1)金属棒的最大加速度;
(2)回路中电阻电压的最大值;
(3)电阻上产生的热量。
在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm2.螺线管导线电阻r=1.0,R1=3.0,R2=4.0,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:
(1)求螺线管中产生的感应电动势;
(2)S断开后,求流经R2的电量.
如图,水平放置金属导轨M、N,平行地置于匀强磁场中,间距为1m,磁场的磁感应强度大小为1T,方向与导轨平面夹角为,金属棒ab的质量为0.02kg,放在导轨上且与导轨垂直,且与导轨的动摩擦因数为0.4.电源电动势为1.5V,内阻为0.5Ω,定值电阻R为1Ω,其余部分的电阻不计,则当电键闭合的瞬间,求:(,)
(1)电流多大
(2)棒ab的加速度为多大
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒和导轨的电阻不计。导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。(设导轨足够长)求:
(1)力F的大小。
(2)t=1.2s时,导体棒的加速度。
(3)估算1.6s内电阻上产生的热量。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m,将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示,线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行,当cd边刚进入磁场时,求:
(1)cd两点间的电势差大小,C.d两点哪点的电势较高
(2)若此时线框计数点恰好为零,求线框下落的高度h所应满足的条件
水平面上有电阻不计的U形导轨MNPQ,宽度为L,N和P之间接入电动势为E的电源(不计内阻)。现垂直导轨放置质量为m、电阻为R的金属棒ab,金属棒与导轨间的动摩擦因数为μ,并加范围较大的、磁感应强度大小为B匀强磁场,磁场方向与水平面夹角为θ且指向右上方,如图所示。求:
(1)当ab棒静止时,ab棒受到的支持力和摩擦力各为多少?
(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?
(3)若B的大小和方向均能改变,则要使ab棒恰好处于静止状态,B的大小至少为多少?此时B的方向如何?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R=2 Ω的电阻连接,右端通过导线与阻值RL=4 Ω的小灯泡L连接。在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中)。CDFE区域内磁场的磁感应强度B随时间变化如图乙所示。在t=0至t=4 s 内,金属棒PQ保持静止,在t=4 s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动。已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化。求:
(1)通过小灯泡的电流;
(2)金属棒PQ在磁场区域中运动的速度大小。
试题篮
()