如图所示,两光滑平行导轨的间距为L=2m,左端连接一阻值为R=40Ω的电阻;把该装置垂直于磁场、放入磁感应强度为B=0.5T的匀强磁场中。在导轨上放一电阻为r=10Ω的导体棒,导体棒与导轨接触良好;若在一拉力F的作用下,导体棒以v=10m/s的速度匀速向右运动,
求:(1)导体棒上产生的感应电动势为多少?
(2)电路中的感应电流多大?电路中电流的方向如何(顺时针或逆时针)?
(3)拉力F的值为多大?
如图所示。竖直放置的间距为L的两平行光滑导轨,上端连接一个阻值为R的电阻,在导轨的MN位置以下有垂直纸面向里的磁场,在MN处的磁感应强度为B0,在MN下方的磁场沿Y轴方向每单位长度磁感应强度减少kT。现有一质量为m,电阻也是R的金属棒,从距离MN为h的上方紧贴导轨自由下落,然后进入磁场区域继续下落h的过程中,能使得电阻R上的电功率保持不变(不计一切摩擦)求:
(1)电阻R上的电功率;
(2)从MN位置再下降h时,金属棒的速度v;
(3)从MN位置再下降h所用的时间t。
如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间距L=0.30m.导轨电阻忽略不计,其间接有定值电阻R=0.40导轨上停放一质量为m="0.10" kg、电阻r="0.20" 的金属杆ab,整个装置处于磁感应强度B=0.50T的匀强磁场中,磁场方向竖直向下.利用一外力F沿水平方向拉金属杆ab,使之由静止开始做匀加速直线运动,电压传感器可将R两端的电压U即时采集并输入电脑,电脑屏幕描绘出U随时间t的关系如图乙所示.求:
(1)金属杆加速度的大小;
(2)第2s末外力的瞬时功率,
如图所示,在高度差h="0.5" m的平行虚线范围内,有磁感强度B="0.5" T、方向垂直于竖直平面向里的匀强磁场,正方形线框abcd的质量m="0.1" kg、边长L="0.5" m、电阻R=0.5,线框平面与竖直平面平行,静止在位置“I”时,cd边跟磁场下边缘有一段距离。现用一竖直向上的恒力F="4.0" N向上提线框,该框由位置“I”无初速度开始向上运动,穿过磁场区,最后到达位置“II”(ab边恰好出磁场),线框平面在运动中保持与磁场方向垂直,且cd边保持水平。设cd边刚进入磁场时,线框恰好开始做匀速运动。g取10 ,求:
(1)线框进入磁场前距磁场下边界的距离H;
(2)线框由位置“I”到位置“II”的过程中,恒力F做的功是多少?线框内产生的热量又是多少?
如下图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5m,电阻不计,左端通过导线与阻值R=2Ω的电阻连接,右端通过导线与阻值RL=4Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长L=2m,有一阻值r=2Ω的金属棒PQ放置在靠近磁场边界CD处.CDFE区域内磁场的磁感应强度B随时间变化规律如下图乙所示.在t=0到t=4s内,金属棒PQ保持静止;在t=4s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化,试求:
⑴通过小灯泡的电流;
⑵金属棒PQ在磁场区域中运动的速度大小.
如图所示,两块很薄的金属板之间用金属杆固定起来使其平行正对,两个金属板完全相同、且竖直放置,金属杆粗细均匀、且处于水平状态。已知两个金属板所组成的电容器的电容为C,两个金属板之间的间距为d,两个金属板和金属杆的总质量为m。整个空间存在一个水平向里的匀强磁场,匀强磁场的磁感应强度为B,磁场方向垂直金属杆,且和金属板平行。现在使整个装置从静止开始在该磁场中释放。重力加速度大小为g。试通过定量计算判断,该装置在磁场中竖直向下做什么运动?
(9分)如图所示,水平放置的导体框架,宽L=0.5 m,接有电阻R=0.3Ω,整个装置处于垂直框架平面向下的匀强磁场中,磁感应强度B=0.4 T.一导体棒ab垂直框边跨放在框架上,并能无摩擦地在框架上滑动,已知导体棒ab的电阻为,框架的电阻均不计.当ab以v=5.0 m/s的速度向右匀速滑动时,求:
(1)ab棒中产生的感应电流的大小和方向;
(2)维持导体棒ab做匀速运动的外力F的大小。
如下图(甲)所示,水平面上两根足够长的金属导轨平行固定放置,间距为L,导轨一端通过导线与阻值为R的电阻连接,导轨上放一质量为m的金属杆.金属杆与导轨的电阻忽略不计,匀强磁场的方向竖直向下.现用与导轨平行的恒定拉力F作用在金属杆上,金属杆最终将做匀速运动.当改变拉力的F大小时,金属杆相对应的匀速运动速度v也会变化,v和F的关系如右图(乙)所示.(取g="10" m/s2)
(1)金属杆在匀速运动之前做什么运动?
(2)若m="0.5" kg,L="0.5" m,R="0.5" Ω, 磁感应强度B为多大?
光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B,竖直放置的正方形金属线框边长为l、电阻为R、质量为m,线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平。开始时,线框与物块静止在图中虚线位置且细线水平伸直。将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角=30°,线框刚好有一半处于右侧磁场中。(已知重力加速度g,不计一切摩擦)求:
(1)此过程中通过线框截面的电荷量q;
(2)此时安培力的功率;
(3)此过程在线框中产生的焦耳热Q。
(12分)如图甲所示,无限长的直导线与y轴重合,通有沿+y方向的恒定电流,该电流在其周围产生磁场的磁感应强度B与横坐标的倒数的关系如图乙所示(图中、均为已知量).图甲中,坐标系的第一象限内,平行于x轴的两固定的金属导轨间距为L,导轨右端接阻值为R的电阻,左端放置一金属棒ab.ab棒在沿+x方向的拉力作用下沿导轨运动(ab始终与导轨垂直且保持接触良好),产生的感应电流恒定不变.已知ab棒的质量为m,经过处时的速度为,不计棒、导轨的电阻.
(1)判断ab棒中感应电流的方向;
(2)求ab棒经过时的速度和所受安培力的大小.
(18分)如图所示,竖直平面内有无限长、不计电阻的两组平行光滑金属导轨,宽度均为L=0.5m,上方连接一个阻值R=1Ω的定值电阻,虚线下方的区域内存在磁感应强度B=2T的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r=0.5Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h0=0.8m处由静止释放,进入磁场后恰作匀速运动.(g取10m/s2)求:
(1)金属杆的质量m为多大?
(2)若金属杆2从磁场边界上方h1=0.2m处由静止释放,进入磁场经过一段时间后开始匀速运动.在此过程中整个回路产生了1.4J的电热,则此过程中流过电阻R的电量q为多少?
(3)金属杆2仍然从离开磁场边界h1=0.2m处由静止释放,在金属杆2进入磁场的同时由静止释放金属杆1,两金属杆运动了一段时间后均达到稳定状态,试求两根金属杆各自的最大速度.(已知两个电动势分别为E1、E2不同的电源串联时,电路中总的电动势E=E1+E2.)
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q
如图所示,两根间距L=1m、电阻不计的平行光滑金属导轨ab、cd水平放置,一端与阻值R=2Ω的电阻相连。质量m=1kg的导体棒ef在外力作用下沿导轨以v=5m/s的速度向右匀速运动。整个装置处于磁感应强度B=0.2T的竖直向下的匀强磁场中。求:
(1)感应电动势大小;
(2)回路中感应电流大小;
(3)导体棒所受安培力大小。
矩形线圈abcd,长ab="20cm" ,宽bc="10cm," 匝数n=200,每匝线圈电阻R= 0.25Ω,整个线圈平面均有垂直于线框平面的匀强磁场穿过,磁感应强度B随时间的变化规律如图所示,求
(1)线圈回路的感应电动势
(2)在t=0.3s时线圈ab边所受的安培力的大小
如图甲所示,光滑绝缘水平面上,磁感应强度B=2T的匀强磁场以虚线MN为左边界,MN的左侧有一质量m=0.1kg,bc边长L1=0.2m,电阻R=2Ω的矩形线圈abcd。t=0时,用一恒定拉力F拉线圈,使其由静止开始向右做匀加速运动,经过时间1 s,线圈的bc边到达磁场边界MN,此时立即将拉力F改为变力,又经过1s,线圈恰好完全进入磁场。整个运动过程中,线圈中感应电流i随时间t变化的图象如图乙所示.求:
(1)求线圈bc边刚进入磁场时的速度v1;
(2)写出第2 s内变力F随时间t变化的关系式;
(3)若从开始运动到线圈完全进入磁场,线圈中产生的热量为0.0875J,求此过程拉力所做的功。
试题篮
()