如图所示,跟水平面成θ=37°角且连接电源的光滑金属框架宽L=20cm,一根重为G的金属棒ab水平放在金属框架,磁感应强度B=0.6T,方向竖直向上,金属棒ab的电阻Rab=1Ω,电源电动势为25V,内阻r=1Ω,当滑动变阻器的电阻为3Ω时,金属棒刚好处于静止状态.
(1)求通过金属棒的电流大小
(2)求金属棒的重力大小?(sin 37°=0.6,cos37°=0.8)
如图所示,间距为2l的两条水平虚线之间有水平方向的匀强磁场,磁感应强度为B。一质量为m、电阻为R的单匝正方形闭合导体线框abcd,从磁场上方某一高度处自由下落,cd边恰好垂直于磁场方向匀速进入磁场。已知线框边长为l,线框平面保持在竖直平面内且cd边始终与水平的磁场边界平行,重力加速度为g,不考虑空气阻力。求:
(1)线框开始下落时,cd边到磁场上边界的高度;
(2)若线框ab边刚离开磁场区域时的速度与cd边刚进入磁场区域时的速度相等,则从cd边刚离开磁场区域到ab边离开磁场区域的过程中,线框中所产生的焦耳热。
如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里:弹簧上端固定,下端与金属棒绝缘。金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长度均为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm。重力加速度大小取10m/s2。判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。
光滑的金属导轨相互平行,它们在平面与水平面夹角为45°,磁感应强度为B=0.5T的匀强磁场竖直向上穿过导轨,此时导轨上放一重0.1N电阻Rab=0.2Ω的金属棒,导轨间距L=0.4m,,导轨中所接电源的电动势为6V,内阻0.5Ω,其它的电阻不计,则欲使金属棒在导轨上保持静止,电阻R应为多大?
在两个倾角都是θ的光滑斜面上分别放置两个导体棒,棒内分别通有电流I1和I2,两处匀强磁场的磁感应强度B的大小相同,但方向不同,一个垂直于水平面,另一个垂直于斜面(如图所示),当两导体棒都保持平衡时,求I1与I2的比值.
(12分)如图甲所示,无限长的直导线与y轴重合,通有沿+y方向的恒定电流,该电流在其周围产生磁场的磁感应强度B与横坐标的倒数的关系如图乙所示(图中、均为已知量).图甲中,坐标系的第一象限内,平行于x轴的两固定的金属导轨间距为L,导轨右端接阻值为R的电阻,左端放置一金属棒ab.ab棒在沿+x方向的拉力作用下沿导轨运动(ab始终与导轨垂直且保持接触良好),产生的感应电流恒定不变.已知ab棒的质量为m,经过处时的速度为,不计棒、导轨的电阻.
(1)判断ab棒中感应电流的方向;
(2)求ab棒经过时的速度和所受安培力的大小.
如图所示,两条足够长的平行金属导轨相距L,与水平面的夹角为,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B,虚线上方轨道光滑且磁场方向向上,虚线下方轨道粗糙且磁场方向向下.当导体棒EF以初速度沿导轨上滑至最大高度的过程中,导体棒MN一直静止在导轨上,若两导体棒质量均为m、电阻均为R,导轨电阻不计,重力加速度为g,在此过程中导体棒EF上产生的焦耳热为Q,求:
(1)导体棒MN受到的最大摩擦力;(2)导体棒EF上升的最大高度.
利用图示装置可以测定匀强磁场的磁感应强度B.已知单匝矩形线圈宽为L,磁场垂直于纸面,当线圈中通以方向如图所示的电流I时,天平如图示那样平衡.当电流大小不变,方向改变时,在右边再加质量为m的砝码后,天平才重新平衡.试求出磁感应强度的大小和方向.
有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为θ=37°,置于垂直于轨道平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数μ=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Ω.求:
①为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?
②滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?
(g=10m/s2,sin37°=0.6,cos37°=0.8)
如图所示,足够长的平行光滑金属导轨水平放置,宽度一端连接的电阻。导线所在空间存在竖直向下的匀强磁场,磁感应强度。导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好,导轨和导体棒的电阻均可忽略不计。在平行于导轨的拉力作用下,导体棒沿导轨向右匀速运动,速度。求:
(1)感应电动势E和感应电流;
(2)在0.1时间内,拉力的冲量的大小;
(3)若将MN换为电阻的导体棒,其他条件不变,求导体棒两端的电压。
如图所示,在倾角为α的光滑斜面上,放置一根长为L,质量为m,通过电流为I的导线,若另加一匀强磁场,下列情况下,导线始终静止在斜面上(重力加速度为g):
(1)若磁场方向竖直向下,则磁感应强度B为多少?
(2)若使磁感应强度最小,求磁感应强度的方向和磁感应强度的最小值.
如图所示,PQ和EF为水平放置的平行金属导轨,间距为l=1.0 m,导体棒ab跨放在导轨上,棒的质量为m=20 g,棒的中点用细绳经轻滑轮与物体c相连,物体c的质量M=30 g.在垂直导轨平面方向存在磁感应强度B=0. 2 T的匀强磁场,磁场方向竖直向上,重力加速度g取10 m/s2.若导轨是粗糙的,且导体棒与导轨间的最大静摩擦力为导体棒ab重力的0.5倍,若要保持物体c静止不动,应该在棒中通入多大的电流?电流的方向如何?
如图所示,PQ和MN是固定于水平面内间距L=1.0m的平行金属轨道,轨道足够长,其电阻可忽略不计。两相同的金属棒ab、cd放在轨道上,运动过程中始终与轨道垂直,且接触良好,它们与轨道形成闭合回路。已知每根金属棒的质量m=0.20kg,每根金属棒位于两轨道之间部分的电阻值R=1.0Ω;金属棒与轨道间的动摩擦因数μ=0.20,且与轨道间的最大静摩擦力等于滑动摩擦力。整个装置处在竖直向上、磁感应强度B=0.40T的匀强磁场中。取重力加速度g=10m/s2。
(1)在t=0时刻,用垂直于金属棒的水平力F向右拉金属棒cd,使其从静止开始沿轨道以a=5.0m/s2的加速度做匀加速直线运动,求金属棒cd运动多长时间金属棒ab开始运动;
(2)若用一个适当的水平外力F′向右拉金属棒cd,使其达到速度v1=20m/s沿轨道匀速运动时,金属棒ab也恰好以恒定速度沿轨道运动。求:
①金属棒ab沿轨道运动的速度大小;
②水平外力F′的功率。
如图所示,MN、PQ为间距L=0.5m且足够长的平行导轨,它们与水平面间的夹角均为θ=37°,在M、P两点间连接一个电源,电动势E=10V,内阻r=1Ω;一质量为m=1kg的导体棱ab横放在两导轨上,其电阻R=0.9Ω,导轨及连接电阻不计,导体棒与金属导轨的摩擦因数为μ=0.1,整个装置处天垂直水平向上的匀强磁场中,求要使导体棒静止在导轨上,磁感应强度的最大值和最小值各是多少?(sin37°=0.6,cos37°=0.8.结论可以用分数表示)
试题篮
()