优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中物理试题 / 日光灯镇流器的作用和原理 / 计算题
高中物理

(18分)
如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.

(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.

  • 题型:未知
  • 难度:未知

把一根长为L = 10cm的直导线垂直磁感线方向放入如图所示的匀强磁场中。

(1)当导线中通以I1 = 2A的电流时,导线受到的安培力大小为 1.0×10-7N,试求该磁场的磁感应强度的大小B。
(2)若该导线中通以I2 = 3A的电流,试求此时导线所受安培力大小F,并判断安培力的方向。

  • 题型:未知
  • 难度:未知

如图甲所示,电阻不计的光滑平行金属导轨固定在水平面上,导轨间距L="0.5" m,左端连接R="0.5" Ω的电阻,右端连接电阻不计的金属卡环。导轨间MN右侧存在方向垂直导轨平面向下的磁场.磁感应强度的B-t图象如图乙所示。电阻不计质量为m="1" kg的金属棒与质量也为m的物块通过光滑滑轮由绳相连,绳始终处于绷紧状态。PQ、MN到右端卡环距离分别为17.5 m和15 m。t=0时刻由PQ位置静止释放金属棒,金属棒与导轨始终接触良好,滑至导轨右端被卡环卡住不动。(g取10 m/s2)求:

(1)金属棒进入磁场时受到的安培力
(2)在0~6 s时间内电路中产生的焦耳热

  • 题型:未知
  • 难度:未知

如图甲,单匝圆形线圈c与电路连接,电阻R2两端与平行光滑金属直导轨p1e1f1、p2e2f2连接.垂直于导轨平面向下、向上有矩形匀强磁场区域Ⅰ、Ⅱ,它们的边界为e1e2,区域Ⅰ中垂直导轨并紧靠e1e2平放一导体棒ab.两直导轨分别与同一竖直平面内的圆形光滑绝缘导轨o1、o2相切连接,o1、o2在切点f1、f2处开有小口可让ab进入,ab进入后小口立即闭合.已知:o1、o2的直径和直导轨间距均为d,c的直径为2d;电阻R1、R2的阻值均为R,其余电阻不计;直导轨足够长且其平面与水平面夹角为,区域Ⅰ的磁感强度为B0.重力加速度为g.在c中边长为d的正方形区域内存在垂直线圈平面向外的匀强磁场,磁感强度B随时间t变化如图乙所示,ab在t=0~内保持静止.

(1)求ab静止时通过它的电流大小和方向;
(2)求ab的质量m;
(3)设ab进入圆轨道后能达到离f1f2的最大高度为h,要使ab不脱离圆形轨道运动,求区域Ⅱ的磁感强度B2的取值范围并讨论h与B2的关系式.

  • 题型:未知
  • 难度:未知

洋流又叫海流,指大洋表层海水常年大规模的沿一定方向较为稳定的流动。因为海水中含有大量的正、负离子,这些离子随海流做定向运动,如果有足够强的磁场能使海流中的正、负离子发生偏转,便可用来发电。图为利用海流发电的磁流体发电机原理示意图,其中的发电管道是长为L、宽为d、高为h的矩形水平管道。发电管道的上、下两面是绝缘板,南、北两侧面M、N是电阻可忽略的导体板。两导体板与开关S和定值电阻R相连。整个管道置于方向竖直向上、磁感应强度大小为B的匀强磁场中。为了简化问题,可以认为:开关闭合前后,海水在发电管道内以恒定速率v朝正东方向流动,发电管道相当于电源,M、N两端相当于电源的正、负极,发电管道内海水的电阻为r(可视为电源内阻)。管道内海水所受的摩擦阻力保持不变,大小为f。不计地磁场的影响。

(1)判断M、N两端哪端是电源的正极,并求出此发电装置产生的电动势;
(2)要保证发电管道中的海水以恒定的速度流动,发电管道进、出口两端要保持一定的压力差。请推导当开关闭合后,发电管两端压力差F与发电管道中海水的流速v之间的关系;
(3)发电管道进、出口两端压力差F的功率可视为该发电机的输入功率,定值电阻R消耗的电功率与输入功率的比值可定义为该发电机的效率。求开关闭合后,该发电机的效率η;在发电管道形状确定、海水的电阻r、外电阻R和管道内海水所受的摩擦阻力f保持不变的情况下,要提高该发电机的效率,简述可采取的措施。

  • 题型:未知
  • 难度:未知

如图所示,质量为m的足够长的“[”金属导轨abcd放在倾角为θ的光滑绝缘斜面上,bc段电阻为R,其余段电阻不计。另一电阻为R、质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PbcQ构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于斜面的光滑立柱。导轨bc段长为L,以ef为界,其左侧匀强磁场垂直斜面向上,右侧匀强磁场方向沿斜面向上,磁感应强度大小均为B。在t=0时,一沿斜面方向的作用力F垂直作用在导轨的bc边上,使导轨由静止开始沿斜面向下做匀加速直线运动,加速度为a。

(1)请通过计算证明开始一段时间内PQ中的电流随时间均匀增大。
(2)求在电流随时间均匀增大的时间内棒PQ横截面内通过的电量q和导轨机械能的变化量△E。
(3)请在F-t图上定性地画出电流随时间均匀增大的过程中作用力F随时间t变化的可能关系图,并写出相应的条件。(以沿斜面向下为正方向)

  • 题型:未知
  • 难度:未知

如图所示,光滑导轨与水平面成θ角,导轨宽L。匀强磁场磁感应强度为B。金属杆长也为L,质量为m,水平放在导轨上。当回路总电流为I1时,金属杆正好能静止。求:

(1)当B的方向垂直于导轨平面向上时B的大小;
(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?

  • 题型:未知
  • 难度:未知

如图所示,在一个范围足够大、垂直纸面向里的匀强磁场中,用绝缘细线将金属棒吊起,使其呈水平状态. 已知金属棒长L=0.1m,质量m=0.05kg,棒中通有I=10A的向右的电流,取g =10m/s2.

(1)若磁场的磁感应强度B=0.2T,求此时金属棒受到的安培力F的大小;
(2)若细线拉力恰好为零,求磁场的磁感应强度B的大小.

  • 题型:未知
  • 难度:未知

如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻。有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T。将一根质量为m=0.05kg有一定阻值的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好。现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行。(sin37°=0.6,cos37°=0.8)。求:

(1)金属棒与导轨间的动摩擦因数μ
(2)cd离NQ的距离s
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式)。

  • 题型:未知
  • 难度:未知

如图甲所示,足够长的光滑U形导轨处在垂直于导轨平面向上的匀强磁场中,其宽度L =1m,所在平面与水平面的夹角为θ=53o,上端连接一个阻值为R=0.40 Ω的电阻.今有一质量为m=0.05kg、有效电阻为r=0.30 Ω的金属杆ab沿框架由静止下滑,并与两导轨始终保持垂直且良好接触,其沿着导轨的下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2
(忽略ab棒运动过程中对原磁场的影响),试求:

(1)磁感应强度B的大小;
(2)金属杆ab在开始运动的1.5 s内,,通过电阻R的电荷量;
(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量。

  • 题型:未知
  • 难度:未知

如图1所示,两根足够长的平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B,金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g,现闭合开关S,将金属棒由静止释放。

(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为R2="2" R1,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q1
(3)当B=0.40T,L=0.50m,37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图2所示。取g = 10m/s2,sin37°= 0.60,cos37°= 0.80。求定值电阻的阻值R1和金属棒的质量m。

  • 题型:未知
  • 难度:未知

如图所示,两平行金属导轨轨道MN、MʹNʹ间距为L,其中MO和MʹOʹ段与金属杆间的动摩擦因数μ=0.4,ON和OʹNʹ段光滑且足够长,两轨道的交接处由很小的圆弧平滑连接,导轨电阻不计,左侧接一阻值为R的电阻和电流传感器,轨道平面与水平面的夹角分别为α=53°和β=37°。区域PQPʹQʹ内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为d,PPʹ的高度为h2=0.3m,。现开启电流传感器,同时让质量为m、电阻为r的金属杆ab自高h1=1.5m处由静止释放,金属杆与导轨垂直且保持接触良好,电流传感器测得初始一段时间内的I t(电流与时间关系)图象如图乙所示(图中I0为已知)。求:

(1)金属杆第一次进入磁场区域时的速度大小v1(重力加速度为g取10m/s2);
(2)匀强磁场的磁感应强度B和金属杆第二次进入磁场区域时的速度大小(此后重力加速度取g);
(3)电阻R在t1 t3时间内产生的总热能QR(用v1和其它已知条件表示)。

  • 题型:未知
  • 难度:未知

如图所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1kg的导体棒,ab导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面。当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J。电动机工作时,电压表、电流表的读数分别为U=7V和I=1A,电动机的内阻r=1Ω。不计一切摩擦,g取10m/s2。求:

(1)导体棒所达到的稳定速度是多少?
(2)导体棒从静止到达稳定速度的时间是多少?(本题20分)

  • 题型:未知
  • 难度:未知

如图所示,四条水平虚线等间距地分布在同一竖直面上,间距为h.在Ⅰ、Ⅱ两区间分布着完全相同、方向水平向里的磁场,磁感应强度大小按B-t图变化(图中B0已知).现有一个长方形金属线框ABCD,质量为m,电阻为R,AB=CD=L,AD=BC=2h.用一轻质细线把线框ABCD竖直悬挂着,AB边恰好在Ⅰ区的正中央.t0(未知)时刻细线恰好松弛,之后立即剪断细线,当CD边到达M3N3时线框恰好匀速运动.(空气阻力不计,g=10m/s2)求:

(1)t0的值;
(2)线框AB边到达M2N2时的速率v;
(3)从剪断细线到整个线框通过两个磁场区的过程中产生的电能有多少?

  • 题型:未知
  • 难度:未知

如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6  cos37°=0.8)

(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;
(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;
(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。

  • 题型:未知
  • 难度:未知

高中物理日光灯镇流器的作用和原理计算题