在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图15-5-5所示.一个不计重力的带电粒子从磁场边界与x轴的交点A处以速率v沿-x方向射入磁场,它恰好从磁场边界与y轴的交点C处沿+y方向飞出.
图15-5-5
(1)请判断该粒子带何种电荷,并求出其比荷;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
在相互垂直的匀强电场和匀强磁场中,有一倾角为θ,足够长的光滑绝缘斜面,磁感强度为B,方向垂直纸面向外,电场方向竖直向上.有一质量为m,带电荷量为+q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图15-4-7所示,若迅速把电场方向反转竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?
图15-4-7
在以坐标原点O为圆心、半径为的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与轴的交点A处以速度沿方向射入磁场,它恰好从磁场边界与轴的交点C处沿方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷;
(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了角,求磁感应强度多大?此次粒子在磁场中运动所用时间是多少?
电视机的显像管中,电子束的偏转是利用磁偏转技术实现的.电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图14所示.磁场方向垂直于圆面.磁场区的中心为O,半径为r.当不加磁场时,电子束将通过O点而打到屏幕的中心M点.为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多大?
图14
如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀速磁场,场强大小为E。在其它象限中存在匀强磁场,磁场方向垂直于纸面向里。A是y轴上的一点,它到坐标原点O的距离为h;C是x轴上的一点,到O的距离为L。一质量为m,电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域。并再次通过A点,此时速度方向与y轴正方向成锐角。不计重力作用。试求:
⑴粒子经过C点速度的大小和方向;
⑵磁感应强度的大小B。
如图,xOy平面内的圆O′与y轴相切于坐标原点O.在该圆形区域内,有与y轴平行的匀强电场和垂直于圆面的匀强磁场.一个带电粒子(不计重力)从原点O沿x轴进入场区,恰好做匀速直线运动,穿过场区的时间为T0.若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过场区的时间为T0/2.若撤去电场,只保留磁场,其他条件不变,求该带电粒子穿过场区的时间.
如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T。小球1带正电,其电量与质量之比=4C/kg,所受重力与电场力的大小相等;小球2不带电,静止放置于固定和水平悬空支架上。小球1向右以v0=23.59m/s的水平速度与小球2正碰,碰后经0.75s再次相碰。设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。(取g=9.8m/s2)问:
(1)电场强度E的大小是多少?
(2)两小球的质量之比是多少?
如图15-5-8所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角.已知带电粒子质量m=3×10-20kg,电荷量q=10-13C,速度v0=105m/S,磁场区域的半径R=×10-1m,不计重力.求磁场的磁感应强度.
图15-5-8 图15-5-9
在某平面上有一半径为R的圆形区域,区域内外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反且磁感应强度都为B,方向如图所示。现在圆形区域的边界上的A点有一个电量为,质量为的带电粒子以沿半径且垂直于磁场方向向圆外的速度经过该圆形边界,已知该粒子只受到磁场对它的作用力。
若粒子在其与圆心O连线旋转一周时恰好能回到A点,试救济 粒子运动速度V的可能值。
在粒子恰能回到A点的情况下,求该粒子回到A点所需的最短时间。
如图13所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场;在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场;在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场.一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限,然后经过x轴上x=-2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y=-2h处的P3点进入第四象限.已知重力加速度为g.求:
图13
(1)粒子到达P2点时速度的大小和方向;
(2)第三象限空间中电场强度和磁感应强度的大小;
(3)带电质点在第四象限空间运动过程中最小速度的大小和方向.
如图16所示,在空间存在这样一个磁场区域,以MN为界,上部分的匀强磁场的磁感应强度为B1,下部分的匀强磁场的磁感应强度为B2,B1=2B2=2B0,方向均垂直纸面向内,且磁场区域足够大.在距离界线为h的P点有一带负电荷的离子处于静止状态,某时刻该离子分解成为带电的粒子A和不带电的粒子B,粒子A质量为m、带电荷量为q,以平行于界线MN的速度向右运动,经过界线MN时的速度方向与界线成60°角,进入下部分磁场.当粒子B沿与界线平行的直线到达位置Q点时,恰好又与粒子A相遇.不计粒子的重力,求:
图16
(1)P、Q两点间距离;
(2)粒子B的质量.
如图15-5-19所示,两个共轴的圆筒形金属电极,外电极接地.其上均匀分布着平行于轴的四条狭缝a、b、c和d,外筒的外半径为r0,在圆筒之外的足够大的区域中有平行于轴线方向的均匀磁场,磁感应强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场,一质量为m、带电荷量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零.如果该粒子经过一段时间的运动之后,恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)
图15-5-19
把一根劲度系数很小的导电弹簧悬挂起来,在它上面附着一只蜻蜓的模型或标本,让弹簧的下端在自然伸长的情况下刚好跟下面容器中电解液面接触并组成如图15-1-11所示的电路,这样就制成了“蜻蜓点水”的小制作了.请自己制作并说明其道理.
图15-1-11
如图所示,一对平行放置的金属板M、N的中心各有一小孔P、Q、PQ连线垂直金属板;N板右侧的圆A内分布有方向垂直于纸面向外的匀强磁场,磁感应强度大小为B,圆半径为r,且圆心O在PQ的延长线上。现使置于P处的粒子源连续不断地沿PQ方向放出质量为m、电量为+q的带电粒子(带电粒子的重力和初速度忽略不计,粒子间的相互作用力忽略不计),从某一时刻开始,在板M、N间加上如图乙所示的交变电压,周期为T,电压大小为U。如果只有在每一个周期的0—T/4时间内放出的带电粒子才能从小孔Q中射出,求:
(1)在每一个周期内哪段时间放出的带电粒子到达Q孔的速度最大?
(2)该圆形磁场的哪些地方有带电粒子射出,在图中标出有带电粒子射出的区域。
试题篮
()